Document Type
Article
Publication Date
1-2018
Department
Mathematics, Statistics, and Computer Science
Keywords
metabolomics, Gaussian mixture distributions, fatty acids
Abstract
Standard approaches to evaluate the impact of single nucleotide polymorphisms (SNP) on quantitative phenotypes use linear models. However, these normal-based approaches may not optimally model phenotypes which are better represented by Gaussian mixture distributions (e.g., some metabolomics data). We develop a likelihood ratio test on the mixing proportions of two-component Gaussian mixture distributions and consider more restrictive models to increase power in light of a priori biological knowledge. Data were simulated to validate the improved power of the likelihood ratio test and the restricted likelihood ratio test over a linear model and a log transformed linear model. Then, using real data from the Framingham Heart Study, we analyzed 20,315 SNPs on chromosome 11, demonstrating that the proposed likelihood ratio test identifies SNPs well known to participate in the desaturation of certain fatty acids. Our study both validates the approach of increasing power by using the likelihood ratio test that leverages Gaussian mixture models, and creates a model with improved sensitivity and interpretability.
Source Publication Title
Pacific Symposium on Biocomputing
Publisher
World Scientific Publishing Company
Volume
23
First Page
496
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
Westra, J., Hartman, N., Lake, B., Shearer, G., & Tintle, N. L. (2018). Analyzing Metabolomics Data for Association with Genotypes Using Two-Component Gaussian Mixture Distributions. Pacific Symposium on Biocomputing, 23, 496. Retrieved from https://digitalcollections.dordt.edu/faculty_work/852
Comments