Document Type
Article
Publication Date
10-2016
Department
Physics and Astronomy
Keywords
planets and satellites, atmospheres, clouds, temperature
Abstract
Deciphering the role of clouds is central to our understanding of exoplanet atmo- spheres, as they have a direct impact on the temperature and pressure structure, and observational properties of the planet. Super-hot Jupiters occupy a temperature regime similar to low mass M-dwarfs, where minimal cloud condensation is expected. However, observations of exoplanets such as WASP-12b (Teq∼2500 K) result in a transmission spectrum indicative of a cloudy atmosphere. We re-examine the temperature and pressure space occupied by these super-hot Jupiter atmospheres, to explore the role of the initial Al- and Ti-bearing condensates as the main source of cloud material. Due to the high temperatures a majority of the more common refractory material is not depleted into deeper layers and would remain in the vapor phase. The lack of depletion into deeper layers means that these materials with relatively low cloud masses can become significant absorbers in the upper atmosphere. We provide condensation curves for the initial Al- and Ti-bearing condensates that may be used to provide quantitative estimates of the effect of metallicity on cloud masses, as planets with metal-rich hosts potentially form more opaque clouds because more mass is available for condensation. Increased metallicity also pushes the point of condensation to hotter, deeper layers in the planetary atmosphere further increasing the density of the cloud. We suggest that planets around metal-rich hosts are more likely to have thick refractory clouds, and discuss the implication on the observed spectra of WASP-12b.
Source Publication Title
Monthly Notices of the Royal Astronomical Society
Publisher
Oxford University Press
Volume
464
Issue
4
First Page
4247
DOI
10.1093/mnras/stw2639
Recommended Citation
Wakeford, H. R., Visscher, C., Lewis, N. K., & Mandell, A. M. (2016). High Temperature Condensate Clouds in Super-Hot Jupiter Atmospheres. Monthly Notices of the Royal Astronomical Society, 464 (4), 4247. https://doi.org/10.1093/mnras/stw2639
Comments
Access publisher's site:
https://academic.oup.com/mnras/article/464/4/4247/2417382/High-temperature-condensate-clouds-in-super-hot?searchresult=1