Document Type

Article

Publication Date

10-28-2016

Department

Mathematics, Statistics, and Computer Science

Keywords

atomic regulon, clustering, gene expression analysis, transcriptomic data, Escherichia coli, hierarchical clustering, CLR, K-Means clustering

Abstract

Understanding gene function and regulation is essential for the interpretation prediction and ultimate design of cell responses to changes in the environment. An important step toward meeting the challenge of understanding gene function and regulation is the identification of sets of genes that are always co-expressed. These gene sets Atomic Regulons ARs represent fundamental units of function within a cell and could be used to associate genes of unknown function with cellular processes and to enable rational genetic engineering of cellular systems. Here we describe an approach for inferring ARs that leverages large-scale expression data sets gene context and functional relationships among genes.

Source Publication Title

Frontiers in Microbiology

Publisher

Frontiers

Volume

7

First Page

1819

DOI

10.3389/fmicb.2016.01819

Included in

Microbiology Commons

Share

COinS