Document Type
Article
Publication Date
7-14-2020
Department
Physics and Astronomy
Keywords
dark matter, neutrino interactions, particles and fields
Abstract
We study a dark matter (DM) model in which the dominant coupling to the standard model occurs through a neutrino-DM-scalar coupling. The new singlet scalar will generically have couplings to nuclei/electrons arising from renormalizable Higgs portal interactions. As a result, the DM particle X can convert into a neutrino via scattering on a target nucleus N: X+N→ν+N, leading to striking signatures at direct detection experiments. Similarly, DM can be produced in neutrino scattering events at neutrino experiments: ν+N→X+N, predicting spectral distortions at experiments such as COHERENT. Furthermore, the model allows for late kinetic decoupling of dark matter with implications for small-scale structure. At low masses, we find that COHERENT and late kinetic decoupling produce the strongest constraints on the model, while at high masses the leading constraints come from DM down-scattering at XENON1T and Borexino. Future improvement will come from CEνNS data, ultralow threshold direct detection, and rare kaon decays.
Source Publication Title
Physical Review D
Publisher
American Physical Society
Volume
102
Issue
1
First Page
015006
DOI
10.1103/PhysRevD.102.015006
Recommended Citation
Hurtado, N., Mir, H., Shoemaker, I. M., Welch, E., & Wyenberg, J. (2020). Dark Matter-Neutrino Interconversion at COHERENT, Direct Detection, and the Early Universe. Physical Review D, 102 (1), 015006. https://doi.org/10.1103/PhysRevD.102.015006
Comments
Access on publisher's site:
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.015006