Document Type
Article
Publication Date
4-2015
Department
Mathematics, Statistics, and Computer Science
Keywords
algebra
Abstract
We follow the lead of Bocci and Chiantini and show how differences in the invariant alpha can be used to classify certain classes of subschemes of P^3. Specifically, we will seek to classify arithmetically Cohen-Macaulay codimension 2 subschemes of P^3 in the manner Bocci and Chiantini classified points in P^2. The first section will seek to motivate our consideration of the invariant alpha by relating it to the Hilbert function and gamma, following the work of Bocci and Chiantini, and Dumnicki, et. al. The second section will contain our results classifying arithmetically Cohen-Macaulay codimension 2 subschemes of P^3. This work is adapted from the author's Ph.D. dissertation.
Source Publication Title
Journal of Pure and Applied Algebra
Publisher
Elsevier
Volume
219
Issue
4
First Page
1055
DOI
10.1016/j.jpaa.2014.05.033
Recommended Citation
Janssen, M. (2015). On the Fattening of Lines in P3. Journal of Pure and Applied Algebra, 219 (4), 1055. https://doi.org/10.1016/j.jpaa.2014.05.033
Comments