Document Type
Conference Proceeding
Publication Date
2011
Department
Mathematics, Statistics, and Computer Science
Keywords
sequencing data, rare variant analysis
Abstract
A number of rare variant statistical methods have been proposed for analysis of the impending wave of next-generation sequencing data. To date, there are few direct comparisons of these methods on real sequence data. Furthermore, there is a strong need for practical advice on the proper analytic strategies for rare variant analysis. We compare four recently proposed rare variant methods (combined multivariate and collapsing, weighted sum, proportion regression, and cumulative minor allele test) on simulated phenotype and next-generation sequencing data as part of Genetic Analysis Workshop 17. Overall, we find that all analyzed methods have serious practical limitations on identifying causal genes. Specifically, no method has more than a 5% true discovery rate (percentage of truly causal genes among all those identified as significantly associated with the phenotype). Further exploration shows that all methods suffer from inflated false-positive error rates (chance that a noncausal gene will be identified as associated with the phenotype) because of population stratification and gametic phase disequilibrium between noncausal SNPs and causal SNPs. Furthermore, observed true-positive rates (chance that a truly causal gene will be identified as significantly associated with the phenotype) for each of the four methods was very low (<19%). The combination of larger than anticipated false-positive rates, low true-positive rates, and only about 1% of all genes being causal yields poor discriminatory ability for all four methods. Gametic phase disequilibrium and population stratification are important areas for further research in the analysis of rare variant data.
Source Publication Title
BMC Proceedings
Volume
5
Issue
Supplement 9
First Page
S119
DOI
10.1186/1753-6561-5-S9-S119
Recommended Citation
Luedtke et al.: Evaluating methods for the analysis of rare variants in sequence data. BMC Proceedings 2011 5(Suppl 9):S119.
Included in
Bioinformatics Commons, Genetics and Genomics Commons, Statistics and Probability Commons
Comments
From Genetic Analysis Workshop 17, Boston, MA, USA. 13-16 October 2010.