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Using “simulation-based inference” (SBI) such as randomization tests as the primary vehicle for 
introducing students to the logic and scope of statistical inference has been advocated with the 

potential of improving student understanding of statistical inference, as well as the statistical 
investigative process as a whole. Moving beyond the individual class activity, entirely revised 

introductory statistics curricula centering on these ideas have been developed and tested. In this 

presentation we will discuss three years of cross-institutional tertiary-level data in the United 
States comparing SBI-focused curricula and non-SBI curricula (roughly 15,000 students). We 

examine several pre/post measures of conceptual understanding in the introductory algebra-based 
course, using hierarchical modelling to incorporate student-level, instructor-level, and 

institutional-level covariates. 

 

INTRODUCTION 

The demands for a statistically literate society are increasing, and the introductory statistics 

course (“Stat 101”) remains the primary venue for learning statistics for the majority of secondary 

and tertiary students. Despite three decades of very fruitful activity in the areas of pedagogy, 

assessment results have not shown dramatic gains in student understanding or appreciation of 

statistics. Surveys have also shown that although many instructors have made changes in their 

courses with respect to technology, use of genuine data, and projects, the changes have been slow 

in developing (Garfield, 2000).  

More recent calls for reform have focused on not only pedagogy and assessment methods, 

but also course content. One example is Cobb’s 2007 call to center the introductory curriculum 

around the reasoning and logic of statistical inference, rather than the normal distribution. Recent 

technology tools enable students to use simulation-methods, e.g., bootstrapping and randomization 

tests, to develop confidence intervals and p-values with minimal mathematical distractions. This 

allows students to focus more closely on the statistical investigation process as a whole rather than 

seeing data collection, data exploration, probability, and statistical inference as unrelated units of 

instruction. Preliminary assessment results, primarily at single institutions, have shown promising 

benefits to this approach (e.g., Tintle et al., 2011, 2012; Beckman, delMas, & Garfield, to appear; 

Chance & McGaughey, 2014; Hildreth, Robison-Cox, & Schmidt, to appear 2018; Maurer & Lock, 

2015). 

The last few years have seen several full curricula/textbooks for introductory algebra-based 

statistics developed which focus on “simulation-based inference” (SBI) including Introduction to 

Statistics Investigations (ISI; Tintle et al.), Statistics: Unlocking the Power of Data (Lock5; Lock et 

al.), Statistical Reasoning in Sports (Tabor & Franklin), Statistical Thinking: A simulation 

approach to modeling uncertainty (Zieffler & Catalysts for Change), and Introductory Statistics 

with Randomization and Simulation (OpenIntro). These textbooks vary in the depth of their 

treatment of simulation-based methods, the choice of simulation methods, the sequencing of topics, 

and the technology tools, but all provide an alternative introduction to statistical reasoning that 

focuses on using simulation to help students understand randomness and inference. 

As part of an NSF grant for developing the ISI curriculum, our team also sought to assess 

students’ development of conceptual understanding in the introductory course, comparing the SBI 

courses to other curricula across scores of institutions. After pilot-testing the instrument, we now 

have three years of data across approximately 15,000 students. The discussion below will describe 

our methods and implementation of our assessment project. These data allow us to compare student 

pre/post performance and attitudes across several curricula, while incorporating student level, 

section level, and instructor level covariates. Below we focus on these textbook comparisons. More 
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details on the hierarchical regression models, which can help identify which factors are most highly 

related to improved performance and perhaps which teaching decisions have the most impact, will 

be provided in the presentation. 

 

SBI CURRICULA 

 The main distinction of SBI curricula is using simulation as the primary vehicle for 

introducing ideas in statistical inference. In the “Lock5” curricula, students learn methods of 

bootstrapping and randomization tests for confidence intervals and tests of significance before 

carrying out any formal inference procedures. Free on-line applets (StatKey) are used to generate 

bootstrap and null distributions to estimate percentile intervals and p-values. This understanding is 

then built upon as students move through more standard “theory-based” inference procedures. 

Similarly, the ISI curricula uses free on-line applets (www.rossmanchance.com/applets/) focusing 

on estimating p-values and standard errors. One distinction from the Lock5 text is this SBI material 

is discussed very early in the course (e.g., week 1) as one piece of the overall statistical 

investigation process (Roy, 2014), and a spiral approach is used to revisit these ideas with new 

scenarios (e.g., comparing groups, association). The CATALST curriculum (Garfield, delMas, & 

Zieffler, 2012) uses TinkerplotsTM to explore the same ideas, focusing on chance models and 
simulation, however the curriculum does not cover as many of the traditional testing procedures. 

Other instructors have developed their own materials that are hybrids of these approaches (e.g., 

Hildreth, Robison-Cox, & Schmidt, to appear). In the analyses below, we differentiate between ISI, 

ISI-first (instructors using the ISI materials for their first time), other SBI (e.g., Lock 5 and 

CATALST), non-SBI, and “other” (materials developed and used at the individual institution) 

courses. (We did not review the other materials in detail to classify them, but several are known to 

be heavily influenced by SBI.) The non-SBI courses were also divided into what the first author 

considered “GAISE-compliant” and “non GAISE-compliant” (non SBI-2) textbooks 

(http://www.amstat.org/asa/files/pdfs/ GAISE/GaiseCollege_Full.pdf). 

 

METHODS 

 A 32-question multiple-choice concept inventory was developed by the ISI author team, 

modelled after the CAOS instrument from the University of Minnesota (delMas, Garfield, Ooms, 

and Chance, 2007). Topics on this inventory include data collection, simulation/probability, 

descriptive statistics, confidence intervals, significance tests, and scope of conclusions. This 

inventory was combined with the SATS-36 instrument (Student Attitudes Toward Statistics; Schau, 

2003) into one instrument. (See Tintle et al., 2018 for a report on the validity and reliability of the 

instrument.) Faculty were recruited to participate using email listservs (e.g., ASA Section on 

Statistics Education, Isolated Statisticians, SIGMAA on statistics education). Faculty were asked to 

give their students the combined instrument through SurveyMonkey during the first and last weeks 

of the term. Students were given the option to opt out of their results being used for research 

purposes. Faculty were encouraged to give their students some incentive (e.g., credit on a 

homework assignment) for participating. Faculty were also asked to complete a survey about their 

own background and teaching methods as well as details of the course (e.g., number of students, 

meeting time, use of active learning, familiarity with the GAISE guidelines, type of institution).  

 

IMPLEMENTATION 

 The primary response of interest is students’ performance on the concept inventory. To 

adjust for pre-test scores and possible ceiling effects, we utilize achievable gain = gain/(1–pre) as 

our measure of student improvement (aka “single-student normalized gain”, e.g., Colt, Davoudi, 

Murgu, & Zamanian Rohani, 2011; Hake, 1998). Students with an achievable gain of -2 and lower 

(e.g., 78% correct on the pre-test, 33% correct on the post-test) were removed from the analyses. 

Students who opted out or who answered less than 60% of the questions on either test were also 

removed. (This includes students who took a “condensed” version of the post-test with 10 

questions.) We felt these observations were not trustworthy measures of student knowledge.  

 Examples of the lengthy data cleaning tasks include reconciling discrepancies in 

demographic data between pre and post administrations (e.g., students changing sex, self-reported 

GPAs, age) and tracking students who changed instructors after the pre-test. Students also self-
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reported SAT or ACT scores which were converted into a z-score based on the means and standard 

deviations of each scale in our dataset (which were similar to nationally reported values). Text 

responses to numeric questions were converted (e.g., “I think my GPA is around 3.2”). The cleaned 

data set was merged with a cleaned version of the teacher inventory.  

 The instrument was field tested in Fall 2012 and used with approximately 2000 students in 

2013/2014 (after cleaning), with mostly ISI instructors. In Year 1 of the study (2014/2015), after a 

few modifications, the instrument was given to over 3,000 students across 70 instructors and 38 

institutions. In Year 2, this was expanded to 95 instructors at 57 institutions. In Year 3, this was 

expanded to over 8,000 students for 95 instructors across 78 institutions.  

After data cleaning, the final pre/post data set for Year 3 consisted of 4440 students, 227 

instructor-terms (some instructors participated in both fall and spring), and 70 institutions, mostly 

universities (n = 2305) and four-year colleges (n = 1182) with some community or two-year 

colleges (n = 263) and high schools (n = 606, year-long course). These gave us 104 sections using 

ISI (49 for the first time), 45 using other SBI texts, and 106 not using an SBI curriculum (39 

classified as not GAISE compliant). One section using a text with a calculus prerequisite was 

removed.  

 
RESULTS 

Gains in conceptual understanding 

 Table 1 shows the mean achievable gain scores across the textbooks for the three years. It’s 

important to note that the achievable gains are modest, but we see a consistent pattern across the 

years: a tendency for higher gains with the ISI textbook, regardless of whether or not the instructor 

is using the text for the first time, and a similar but slightly lower improvement with the other SBI 

texts. Typically the means are lower for the non-SBI students, especially those in courses using 

textbooks that were not considered GAISE compliant. The last row shows that in Year 3 scores 

generally declined if the high school (year-long) sections are removed from the analysis, but also 

showing stronger textbook effects. There is still considerable within-section variability (Figure 1) 

that we explored further using hierarchical regression models incorporating student and instructor 

level data. This pattern has held true even after adjusting for student background (e.g., SAT/ACT z-

score, GPA, pre-test score). 

 

Table 1. Mean achievable gain scores for 2014/2015 – 2016/2017 school years, across textbooks 

 Overall ISI ISI 1st Other SBI Not SBI Not SBI-2 

Year 1 0.170 0.216 0.214 0.195 0.124 0.061 

Year 2 0.108 0.170 0.160 0.132 0.076 0.030 

Year 3 0.169 0.191 0.191 0.169 0.166 0.101 

Year 3 (no HS) 0.147 0.179 0.177 0.169 0.104 0.060 

 

 
Figure 1. Boxplots of achievable gain by textbook for 227 instructor-terms (Year 3).  

Red lines indicate averages by textbook classification. 
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 One observation of interest from the hierarchical models is that Carnegie classification 

(e.g., primarily undergraduate institution vs. research university) explains more variation in the data 

than the section or instructor or institution. For student level variables, the strongest predictors of 

achievable gain include pre-test, SAT/ACT z-score, and GPA. An analysis by Tintle et al. (to 

appear) conditioning on “student preparation” (standardized pre-college test scores) showed equal 

benefits to both more quantitatively and less quantitatively mature students. A preliminary analysis 

(Chance, Wong, & Tintle, 2016) showed evidence of a quadratic relationship with GPA as well as 

interactions with student and instructor sex. These relationships will be explored further in 

subsequent analyses. 

 
Student attitudes 

 The SATS has been used by several authors to explore changes in student attitudes in 

introductory statistics course. The SATS consists of several questions within 6 subscales: affect, 

cognitive competence, difficulty, effort, interest, and value. However, few studies, with a few 

notable exceptions, have found large improvements or even changes in student attitudes from the 

first course. (See for example the 2012 SERJ special issue, 11(2).) Table 2 shows the gain (post-

pre) in the attitude subscales across the textbooks for Year 3. (Cronbach   values were quite 

comparable to other studies as well.) 

 

Table 2. Year 3 attitude changes from SATS across textbook type (post – pre), n = 4414 

 ISI ISI 1st Other SBI Not SBI Not SBI-2 Own 

n  600 662 1103 1279 291 479 

Affect 0.235 0.074 0.174 0.033 0.021 0.080 

Cog Comp 0.174 -0.043 -0.018 -0.077 -0.194 0.048 

Difficulty 0.405 0.227 0.236 0.189 0.190 0.314 

Effort -0.967 -1.01 -0.920 -1.03 -1.23 -0.943 

Interest -0.565 -0.601 -0.449 -0.515 -0.740 -0.728 

Value -0.250 -0.312 -0.230 -0.270 -0.372 -0.371 

 

 The SBI courses do show more positive gains on the affect and cognitive competence 

scales. The positive changes in difficulty imply the students tended to find the course less difficult 

than expected (more so for the SBI courses). The negative changes in effort imply the students 

ended up putting in less work than they anticipated. Unfortunately, we also see negative changes in 

the interest and value scales, though less so with the SBI curricula. 

 

Question by question comparisons on concept inventory 

Below (Table 3) we highlight some individual questions from our concept inventory using 

the 2016-2017 data (4646 students on the pre-test, 5166 students on the post-test). One concern 

with a course focused on simulation-based inference is a loss of time on other topics (e.g., 

descriptive statistics). Our results indicate that most recently, students in simulation-based 

inference courses show similar gains in understanding as students in the non-simulation-based 

curricula. For example, Question 22 on the concept inventory requires students to realize that they 

can compare two distributions of a quantitative variable even though the groups have unequal 

sample sizes. Students entering the college course show proficiency on this topic, increasing by the 

end of the course across all the curricula. 

As hoped, students in the SBI curricula do show large gains in questions related the 

reasoning of statistical inference. Question 27 on the concept inventory asks students whether a 

research is hoping for a large or small p-value to establish their hypothesis. Students are near 50/50 

entering the course, but students leave the course with better understanding of the goals of 

statistical inference, especially in the simulation-based curricula. Students also demonstrated 

improvement in recognizing a correct p-value interpretation (Q29) as well as invalidating an 

incorrect interpretation (Q28, probability the null is true). 
Some questions still showed little improvement or even decreases in performance. For 

example, Question 24 provides an insignificant p-value and asks whether that provides evidence for 
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the null. All groups performed more poorly on this question on the posttest. Question 26 asked 

students to estimate the sample sized needed for a 3% margin of error in a survey of US adults 

(population size 310 million). Students improved but still performed very poorly on this question. 

 Students in the SBI courses showed more improvement in (informally) recognizing a result 

of 13 successes in 15 attempts as unlikely to happen by random chance (Q43) and in recognizing a 

correct description of a simulation (Q38) but did not outperform their peers in recognizing an 

inappropriate simulation plan (Q37, repeat the experiment many times).  

 

Table 3. Question by question comparisons of interest (proportion correct responses) 

  ISI ISI 1st Other SBI Non SBI Non SBI2 

Q22: comparing distributions 
Pre 0.69 0.71 0.70 0.73 0.68 

Post 0.86 0.85 0.85 0.81 0.69 

Q27: want large or small p-

value 

Pre 0.42 0.36 0.48 0.40 0.29 

Post 0.92 0.88 0.83 0.77 0.60 

Q29: correct p-value 

interpretation 

Pre 0.43 0.42 0.42 0.44 0.35 

Post 0.65 0.65 0.59 0.52 0.44 

Q28: p-value is prob of null 
Pre 0.56 0.51 0.58 0.57 0.44 

Post 0.83 0.82 0.79 0.76 0.57 

Q24: evidence for null 
Pre 0.83 0.80 0.78 0.83 0.81 

Post 0.65 0.68 0.66 0.67 0.60 

Q26: margin of error 
Pre 0.13 0.12 0.16 0.14 0.13 

Post 0.24 0.27 0.24 0.33 0.21 

Q43: 13/15 
Pre 0.41 0.40 0.40 0.40 0.35 

Post 0.62 0.56 0.52 0.44 0.34 

Q38: correct simulation 
Pre 0.56 0.64 0.56 0.52 0.47 

Post 0.88 0.87 0.76 0.65 0.53 

Q37: incorrect simulation 
Pre 0.39 0.37 0.39 0.44 0.35 

Post 0.39 0.36 0.44 0.46 0.33 

 

 These results suggest that while students in SBI courses perform on par with their peers on 

many questions and above their peers on others, there are still areas for improvement across all the 

curricula. In particular, the roles of the null hypothesis and sample size in the simulation models 

needs to be better addressed. 

 

DISCUSSION 

Across three years of data (about 5,000 students per year after cleaning), we are seeing 

some consistent comparisons of the curricula, with courses that fully integrate simulation-based 

inference seeing slightly higher gains in student achievement on average. These differences have 

also been consistent in hierarchical models that adjust for student-level (e.g., GPA, ACT/SAT 

scores) and instructor-level data discussed elsewhere. These trends have also been consistent across 

the types of questions on the concept inventory. Still, there remains substantial within-section 

variation for further exploration. Further analyses will also consider 

• Which student and instructor level variables explain the most variation in achievable gain? Are 
there interactions, e.g., between student pre-attitude and instructor gender or background? 

• When the concept and attitude surveys are given in one instrument, does it matter which is 

given first? What is the role of incentives on student performance on these instruments? 

• Do we see similar differences across textbooks four months after the course? 

• Can we conjecture a learning trajectory of students understanding of statistical inference based 

on the number of exposures to simulation-based inference? 

We also plan to make our dataset available to other researchers after the final cleaning steps. 
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