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Given a nontrivial homogeneous ideal I ⊆ k[x1, x2, . . . , xd], a problem of great recent
interest has been the comparison of the rth ordinary power of I and the mth symbolic
power I(m). This comparison has been undertaken directly via an exploration of which
exponents m and r guarantee the subset containment I(m) ⊆ Ir and asymptotically via

a computation of the resurgence ρ(I), a number for which any m/r > ρ(I) guarantees
I(m) ⊆ Ir. Recently, a third quantity, the symbolic defect, was introduced; as It ⊆ I(t),
the symbolic defect is the minimal number of generators required to add to It in order
to get I(t). We consider these various means of comparison when I is the edge ideal of
certain graphs by describing an ideal J for which I(t) = It + J . When I is the edge
ideal of an odd cycle, our description of the structure of I(t) yields solutions to both the
direct and asymptotic containment questions, as well as a partial computation of the
sequence of symbolic defects.

Keywords: Symbolic power; monomial ideals; edge ideal; resurgence; graphs; odd cycle.

Mathematics Subject Classification 2010: 13F20

1. Introduction

Let k be an algebraically closed field, and I a nonzero proper homogeneous

ideal in S = k[x0, x1, x2, . . . , xN ]. Recall that the mth symbolic power of I is

∗Corresponding author.
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the ideal

I(m) = S ∩

 ⋂

P∈Ass(I)

ImSP


 .

Over the last 10–15 years, the structure of I(m) has been an object of ongoing study; 
see e.g. the recent survey [5]. One avenue for this study has been the examination of 
the relationship between I(m) and the well-understood algebraic structure of Ir, the  
rth ordinary power of I. The naive context in which to examine this relationship 
is via subset containments, i.e. for which m and r, s, and t do we have I(m) ⊆ Ir 

and Is ⊆ I(t)? In fact, this line of enquiry has been extremely productive. It is 
straightforward to see that Is ⊆ I(t) if and only if s ≥ t, but determining which r 
and m give I(m) ⊆ Ir is more delicate.

Seminal results of Ein–Lazarsfeld–Smith and Hochster–Huneke [8, 11] estab-
lished that for such ideals, I(m) ⊆ Ir if m/r ≥ N . Additional information about 
the ideal under consideration generally leads to tighter results (see e.g. [2, 6, 7]). 
This phenomenon led to Bocci and Harbourne’s introduction of a quantity known 
as the resurgence of I, denoted ρ(I); it is the least upper bound of the set 
T = {m/r | I(m) �⊆ Ir}. Thus,  if m/r > ρ(I), we have I(m) ⊆ Ir.

Recently, Galetto, Geramita, Shin, and Van Tuyl introduced a new measure of 
the difference between I(m) and Im known as the symbolic defect. Since Im ⊆ I(m), 
the quotient I(m)/Im is a finite S-module; thus, we let sdefect(I,  m) denote the  
number of minimal generators of I(m)/Im as an S-module. The symbolic defect 
sequence is the sequence {sdefect(I,  m)}m∈N. In [10], the authors study the symbolic

defect sequences of star configurations in Pk
n and homogeneous ideals of points in P2

k. 
Our work considers all these questions in the context of a class of edge ideals. Let

G = (V, E) be a (simple) graph on the vertex set V = {x1, x2, . . . , xn} with edge set 
E. The edge ideal of G, introduced in [14], is the ideal I(G) ⊆ R = k[x1, x2, . . . , xn] 
given by

I(G) = ({xixj | {xi, xj} ∈  E}).
That is, I(G) is generated by the products of pairs of those variables between which 
are edges in G.

In [12], the authors establish that, for an edge ideal I = I(G), we have I(m) = Im 

for all m ≥ 1 if and only if G is bipartite. A natural question, then, is to explore the 
relationship between I(G)(m) and I(G)r when G is not bipartite, which is equivalent 
to G containing an odd cycle. Thus, [9] sought to explore this relationship when 
G = C2n+1 is a cycle on 2n + 1 vertices.

We continue the problem of exploring the structure of the symbolic power 
I(G)(t) for certain classes of graphs G, with a focus on when G is an odd cycle. The 
main results of this work are Theorem 4.1 and Corollary 4.1, which together de-
scribe a decomposition of the form I(t) = It +J , where J is a well-understood ideal. 
We are then able to use this decomposition to resolve [9, Conjecture 15], compute 
ρ(I(C2n+1)) in Theorem 5.1, and  partial symbolic defect sequence in
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Theorem 5.2. We close by showing that our ideas in Theorem 4.1 apply for complete

graphs and graphs which consist of an odd cycle plus an additional vertex and edge.

Remark

As preparation of this paper was concluding in summer 2017, Dao et al. posted the

preprint [5]. In particular, their Theorem 4.13 bears a striking resemblance to our

Corollary 5.1. While these similarities are worth noting, in part as evidence that

interest in symbolic powers is high, it is also worth noting that the aims of these

two works are distinct and complementary. The aim of the relevant sections of [5]

is to investigate the packing property for edge ideals, while ours is to more directly

describe the difference between the ordinary and symbolic powers by investigating

the structure of a set of minimal generators for I(t). We then use information about

these generators to compute invariants related to the containment I(m) ⊆ Ir.

2. Background Results

Edge ideals are an important class of examples of squarefree monomial ideals, i.e.

an ideal generated by elements of the form xa1
1 xa2

2 · · ·xan
n , where ai ∈ {0, 1} for

all i. When I is squarefree monomial, it is well known that the minimal primary

decomposition is

I = P1 ∩ · · · ∩ Pr, with Pj = (xj1 , . . . , xjsj
) for j = 1, . . . , r.

When I = I(G) is an edge ideal, the variables in the Pj ’s are precisely the vertices

in the minimal vertex covers of G. Recall that, given a graph G = (V,E), a vertex

cover of G is a subset V ′ ⊆ V such that for all e ∈ E, e∩ V ′ �= ∅. A minimal vertex

cover is a vertex cover minimal with respect to inclusion.

Lemma 2.1 ([13, Corollary 3.35]). Let G be a graph on the vertices

{x1, x2, . . . , xn}, I = I(G) ⊆ k[x1, x2, . . . , xn] be the edge ideal of G and

V1, V2, . . . , Vr the minimal vertex covers of G. Let Pj be the monomial prime ideal

generated by the variables in Vj. Then

I = P1 ∩ P2 ∩ · · · ∩ Pr

and

I(m) = Pm
1 ∩ Pm

2 ∩ · · · ∩ Pm
r .

Symbolic powers of squarefree monomial ideals (and, more specifically, edge 
ideals) have enjoyed a great deal of recent interest (see e.g. [1, 4]). In [1], a linear 
programming approach is used to compute invariants related to the containment 
question. We adapt this technique in Lemma 5.4 for the edge ideals under consid-
eration in this paper. One result of [1] which will be of use is the following.

Lemma 2.2. Let I ⊆ R be a squarefree monomial ideal with minimal primary
decomposition I = P1 ∩P2 ∩· · ·∩Pr with Pj = (xj1 , . . . , xjsj 

) for j = 1, . . . , r. Then  
xa1 · · ·xan ∈ I(m) if and only if aj1 + · · ·  + ajsj 

≥ m for j = 1, . . . , r.
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Remark 2.1. Throughout this work, we will be exploring questions about ideals

in R = k[x1, x2, . . . , xn] related to graphs on the vertex set {x1, x2, . . . , xn}. We will

use the xi’s interchangeably to represent both vertices and variables. The specific

use should be clear from the context, and we see this as an opportunity to emphasize

the close connection between the graph and the ideal.

3. Factoring Monomials Along Odd Cycles

In this section, we introduce the main ideas of our approach to studying symbolic

powers of edge ideals. We define a means of writing a monomial in a power of an

edge ideal with respect to the minimal vertex covers of the graph and study the

properties of this representation. In what follows, let R = k[x1, x2, . . . , x2n+1] and

let I = I(C2n+1) be the edge ideal of the odd cycle C2n+1.

Definition 3.1. Let m ∈ k[x1, x2, . . . , x2n+1] be a monomial. Let ej denote the

monomial representing the jth edge in the cycle, i.e. ej = xjxj+1 for 1 ≤ j ≤ 2n,

and e2n+1 = x2n+1x1. We may then write

m = xa1
1 xa2

2 · · ·xa2n+1

2n+1 e
b1
1 eb22 · · · eb2n+1

2n+1 ,

where b(m) :=
∑

bj is as large as possible (observe 0 ≤ 2b(m) ≤ deg(m)) and

ai ≥ 0. When m is written in this way, we will call this an optimal factorization of

m, or say that m is expressed in optimal form. In addition, each xai

i with ai > 0 in

this form will be called an ancillary factor of the optimal factorization, or just an

ancillary.

Observe that the optimal form representation of m is not unique in the sense

that different edges may appear as factors of m; for example, in k[x1, . . . , x5], if

m = x2
1x

2
2x3x4x5 we may write m = x1e1e2e4 = x2e1e3e5.

Lemma 3.1. Let m = xa1
1 xa2

2 · · ·xa2n+1

2n+1 e
b1
1 eb22 · · · eb2n+1

2n+1 ∈ I(C2n+1) be an optimal

factorization. Then any m′ = x
a′
1

1 x
a′
2

2 · · ·xa′
2n+1

2n+1 e
b′1
1 e

b′2
2 · · · eb

′
2n+1

2n+1 will also be an opti-

mal factorization if 0 ≤ a′i ≤ ai and 0 ≤ b′j ≤ bj for all i and j.

Proof. Let m′ = x
a′
1

1 x
a′
2

2 · · ·xa′
2n+1

2n+1 e
b′1
1 e

b′2
2 · · · eb

′
2n+1

2n+1 such that for all i, j, 0 ≤ a′i ≤ ai
and 0 ≤ b′j ≤ bj. Since each exponent ofm′ is less than or equal to the corresponding

exponent from m, we know that m′ divides m. Thus, there must exist some

m′′ = x
(a1−a′

1)
1 x

(a2−a′
2)

2 · · ·x(a2n+1−a′
2n+1)

2n+1 e
(b1−b′1)
1 e

(b2−b′2)
2 · · · e(b2n+1−b′2n+1)

2n+1

such that m = m′m′′.
Suppose that m′ is not in optimal form. Then we can re-express m′ as

m′ = xc1
1 xc2

2 · · ·xc2n+1

2n+1 e
d1
1 ed2

2 · · · ed2n+1

2n+1 ,

such that
∑

b′i <
∑

di. As

m = m′m′′ =
∏

x
(ai−a′

i+ci)
i e

(bi−b′i+di)
i ,
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m has an edge exponent sum of
∑

(bi−b′i+di) =
∑

bi−
∑

b′i+
∑

di. As
∑

b′i <
∑

di,

it must be true that
∑

(bi − b′i + di) >
∑

bi.

The next lemma describes a process that will be critical in the proof of Theo-

rem 4.1. Intuitively, it says that if a monomial is factored along a path of an odd

number of consecutive edges with ancillaries on both ends of this path of edges, the

monomial is not written in optimal form, i.e. it can be rewritten as a product of

strictly more edges. Before stating and proving the lemma, we illustrate the process

with an example.

Example 3.1. Let G be a cycle with 111 vertices and consider m =

x3
1x

4
2x

2
3x

3
4x

5
5x

3
6x

2
7x

2
8 ∈ I(G) with edge factorization:

m = x1e
2
1e

2
2e

3
4e

2
5e6e7x8,

where ei = xixi+1. Note that in this factorization, there is an ancillary at x1 and

x8. We will show that m is not in optimal form.

We can graphically represent m by drawing an edge between xi and xi+1 for

each ei in m and creating a bold outline for each ancillary, as shown below:

x1 x2 x3 x4 x5 x6 x7 x8

Using a method described more fully in Lemma 3.2, we will “break” each of the

red (bolded) edges back into standard xi notation so that we create new ancillaries

at every vertex.

x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8

Note that if we define a new monomial p based on this graphical representation,

where p = x1x2x3x4x5x6x7x8e
2
1e2e

2
4e

2
5e7, we have m = p because we are merely

changing the factorization of the monomial m, not its value.

As one can see, there are now eight consecutive ancillaries, which we can pair

up in a new way, as shown below. New edges are highlighted in green (bolded in

the second line).

x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8
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Now we have a third possible representation q of this monomial. Note that

q = e31e2e3e
2
4e

3
5e

2
7 and q = p = m. As you can see, this monomial representation

has one more edge than our original representation, which means that m is not

optimal.

Lemma 3.2. Let m = x
aj

j e
bj
j e

bj+1

j+1 · · · ebj+2k

j+2k x
aj+2k+1

j+2k+1 , where aj , aj+2k+1 ≥ 1. If it is

the case that bj+2h+1 ≥ 1 for all h ∈ {0, . . . , k− 1}, then m is not in optimal form.

Proof. Let m = x
aj

j e
bj
j e

bj+1

j+1 · · · ebj+2k

j+2k x
aj+2k+1

j+2k+1 and notice that m is a string of

adjacent edges with ancillaries on either end. We will show that this representation

of m is not optimal. For clarity, and without loss of generality, let j = 1, and

suppose that bi ≥ 1 for all evenly indexed edge exponents.

Let p = x1e2e4 · · · e2kx2k+2 and note that by Lemma 3.1, p must be in optimal

form if m is expressed optimally. However,

p = x1e2e4 · · · e2kx2k+2

= x1(x2x3)(x4x5) · · · (x2kx2k+1)x2k+2

= (x1x2)(x3x4)(x5x6) · · · (x2k+1x2k+2)

= e1e3e5 · · · e2k+1.

4. Powers of Edge Ideals and Their Structures

We will now turn to a decomposition of I(t) in terms of It and another ideal J so

that I(t) = It + J . Our approach has numerous strengths, including the ability to

easily compute the symbolic defect of I for certain powers, as well as to determine

which additional elements are needed to generate I(t) from It.

Although we will primarily focus on odd cycles in this section, we go on to show

that the same underlying principles can be extended to edge ideals of other types

of graphs; see Sec. 6 for more.

Definition 4.1. Let V ′ ⊆ V (G) = {x1, x2, . . . , xr} be a set of vertices. For a

monomial xa ∈ k[x1, x2, . . . , xr ] with exponent vector a = (a1, a2, . . . , ar), define

the vertex weight wV ′(xa) to be

wV ′(xa) :=
∑

xi∈V ′
ai.

We will usually be interested in the case when V ′ is a minimal vertex cover.

Using the language of vertex weights, the definition of the symbolic power of an

edge ideal given in Lemma 2.2 becomes

I(t) = ({xa | for all minimal vertex covers V ′, wV ′(xa) ≥ t}).
Now define sets

L(t) =  {xa | deg(xa) ≥ 2t and for all minimal vertex covers V ′, wV ′ (xa) ≥ t}
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and

D(t) = {xa | deg(xa) < 2t and for all minimal vertex covers V ′, wV ′(xa) ≥ t},
and generate ideals (L(t)) and (D(t)), respectively. Note that I(t) = (L(t))+(D(t)).

The main work of this section is to show, for the edge ideal I of an odd cycle, that

It = (L(t)), which is the content of Theorem 4.1.

Lemma 4.1. Let S = k[x1, . . . , xr], G be a graph on {x1, . . . , xr}, I = I(G), and

L(t) be as defined above. Then It ⊆ (L(t)).

Proof. Suppose m ∈ It. Write m in optimal form as m = xa1
1 · · ·xar

r

∏
i<j e

bij
ij .

We know that given an arbitrary minimal vertex cover V ′ and edge eij = xixj

dividing m, it must be true that xi ∈ V ′ or xj ∈ V ′ or both. Thus wV ′(m) ≥ b(m).

Further, since m ∈ It, we know b(m) ≥ t and deg(m) ≥ 2t, which means that

m ∈ (L(t)).

Lemma 4.2. Let S = k[x1, . . . , xr], G be a graph on {x1, . . . , xr}, I = I(G), and

L(t) be as defined above. For all m �∈ It, if m has no ancillaries or a single ancillary

of degree 1 then m �∈ (L(t)).

Proof. If there are no ancillaries in m then deg(m) = 2b(m) < 2t. Thus, m cannot

be in L(t), which also means that it is not in (L(t)) as none of the divisors of m are

in L(t) for a similar reason. Furthermore, we reach the same conclusion if there is

only one ancillary in m and it has an exponent of 1, as deg(m) = 2b(m)+1 < 2t+1,

and since 2b(m) + 1 and 2t+ 1 are both odd, 2b(m) + 1 < 2t.

For the remainder of this section, let I = I(C2n+1) ⊆ R = k[x1, x2, . . . , x2n+1]

and V ′ ⊆ V (C2n+1) be a minimal vertex cover of C2n+1.

Theorem 4.1. Given I and (L(t)) as defined above, It = (L(t)).

Proof. By Lemma 4.1 we know that It ⊆ (L(t)) so we must only show the reverse

containment. Let m �∈ It, which implies that b(m) < t; then we will show that

m �∈ (L(t)). Lemma 4.2 allows us to consider only cases where m either has multiple

ancillaries or has a single ancillary of at least degree 2.

Given an arbitrary monomial m �∈ It, let m = x
a�1

�1
x
a�2

�2
· · ·xa�r

�r
eb11 eb22 · · · eb2n+1

2n+1

be an optimal factorization of m where x
a�q

�q
is an ancillary and 1 ≤ �1 < �2 < · · · <

�r ≤ 2n+ 1.

Our goal is to show that there exists some vertex cover with a weight equal to 
b(m), and as b(m) < t, m cannot be in L(t). Since L(t) is the generating set of 
(L(t)), this will be sufficient to claim that m �∈ (L(t)) because neither m, nor any 
of its divisors whose vertex weights can only be less than that of m will be in the 
generating set.
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We will construct a minimal vertex cover S of C2n+1 out of a sequence of subsets

S1, S2, . . . , Sr of V , where each Sq is a cover for the induced subgraph Hq of C2n+1

on

VHq = {x�q , x�q+1, . . . , x�q+1−1, x�q+1}.
For the sake of simplicity, let xai

i and x
aj

j be a pair of consecutive ancillaries

(or let xai

i = x
a�r

�r
and x

aj

j = x
a�1

�1
in the wraparound case, or let xai

i = x�1 and

x
aj

j = x
a�1−1

�1
in the case of a single ancillary with degree greater than 1). In addition,

let mq = xai

i ebii e
bi+1

i+1 · · · ebj−1

j−1 x
aj

j . Note that by Lemma 3.1, mq is in optimal form.

We will show for each subgraph Hq, there exists some set of vertices Sq ⊆ VHq

that covers Hq such that wSq (mq) = b(mq).

Case 1. Suppose that VHq has an odd number of elements. Consider

Sq = {xi+1, xi+3, . . . , xj−1}.
We claim that wSq (mq) = b(mq). This can be shown as follows:

mq = xai

i ebii e
bi+1

i+1 · · · ebj−2

j−2 e
bj−1

j−1 x
aj

j

= xai

i (xixi+1)
bi(xi+1xi+2)

bi+1 · · · (xj−2xj−1)
bj−2 (xj−1xj)

bj−1x
aj

j

= x
(ai+bi)
i x

(bi+bi+1)
i+1 x

(bi+1+bi+2)
i+2 · · ·x(bj−2+bj−1)

j−1 x
(bj−1+aj)
j .

By Definition 4.1,

wSq (mq) = (bi + bi+1) + (bi+2 + bi+3) + · · ·+ (bj−2 + bj−1)

=

j−1∑
h=i

bh

= b(mq).

Case 2. Suppose now that VHq has an even number of elements. If VHq = {xi, xj},
then the two ancillaries are adjacent and m is not in optimal form, so we know that

VHq contains additional vertices. Moreover, Lemma 3.2 demonstrates that for some

h satisfying 1 ≤ h ≤ j−i−1
2 , bi+2h−1 = 0.

Consider Sq = {xi+1, xi+3, . . . , xi+2h−1, xi+2h, xi+2h+2, . . . , xj−1}. We claim

that wSq (mq) = b(mq). We see

mq = xai

i ebii e
bi+1

i+1 · · · ebj−2

j−2 e
bj−1

j−1 x
aj

j

= xai

i (xixi+1)
bi(xi+1xi+2)

bi+1 · · · (xj−2xj−1)
bj−2 (xj−1xj)

bj−1x
aj

j

= x
(ai+bi)
i x

(bi+bi+1)
i+1 x

(bi+1+bi+2)
i+2 · · ·x(bj−2+bj−1)

j−1 x
(bj−1+aj)
j .

Then

wSq (mq) = (bi + bi+1) + (bi+2 + bi+3) + · · ·+ (bi+2h−2 + bi+2h−1)

+ (bi+2h−1 + bi+2h) + (bi+2h+1 + bi+2h+2) + · · ·+ (bj−2 + bj−1)
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= bi+2h−1 +

j−1∑
h=i

bh

= bi+2h−1 + b(mq)

= 0 + b(mq)

= b(mq).

Hence, it does not matter whether VHq has an odd or even number of vertices

because wSq (mq) = b(mq) regardless.

Now, since each Sq covers its respective set of vertices, the union of all of these

disjoint subcovers S = ∪Sq is a vertex cover of C2n+1. In addition, as each Sq

is completely disjoint from any other subgraph’s cover, wS(m) =
∑

wSq (mq) =∑
b(mq). As each b(mq) was the number of edges that existed in that induced

subgraph representation, and no two subgraphs contained any of the same edges,∑
b(mq) = b(m), the total number of edges in an optimal factorization of m. That

is, we have constructed a vertex cover S such that wS(m) = b(m) < t. Thus,

m /∈ (L(t)), and therefore It = (L(t)).

Corollary 4.1. Given I and (D(t)) as above, I(t) = It + (D(t)).

Proof. Apply Theorem 4.1 to the equation I(t) = (L(t)) + (D(t)).

Now we have proved that I(t) = It + (D(t)), we will use this result to carry

out various computations related to the interplay between ordinary and symbolic

powers.

We close this section with a brief remark on the proof of Theorem 4.1. Specif-

ically, it relies on the fact that C2n+1 is a cycle, but not that C2n+1 is an odd

cycle. However, we focus on the odd cycle case as even cycles are bipartite, and [12]

showed that if I is the edge ideal of a bipartite graph, then It = I(t) for all t ≥ 1.

5. Applications to Ideal Containment Questions

Given the edge ideal I of an odd cycle C2n+1, Corollary 4.1 describes a structural

relationship between I(t) and It given any t ≥ 1. In this section, we will exploit this

relationship to establish the conjecture of [9]. We then will compute the resurgence

of I = I(C2n+1) and explore the symbolic defect of various powers of I.

We will begin by examining D(t).

Lemma 5.1. For a given monomial xa, if there exists some i such that ai = 0, 
then xa �∈ (D(t)).

Proof. Although all graphs have many different minimal vertex covers, odd cycles 
have a vertex cover that includes any two adjacent vertices and alternating vertices 
thereafter
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Without loss of generality, consider xa and suppose a1 = 0. Two

such minimal vertex covers that include x1 are {x1, x2, x4, x6, . . . , x2n} and

{x1, x3, x5, . . . , x2n+1}.
In order for xa to be in D(t), it must be true that wV ′(xa) ≥ t. This means that

a1 + a2 + a4 + · · ·+ a2n ≥ t and a1 + a3 + · · ·+ a2n+1 ≥ t. Adding the inequalities

yields a1 + (a1 + a2 + a3 + · · · + a2n+1) ≥ 2t. As a1 = 0, we have
∑2n+1

i=1 ai ≥ 2t,

which contradicts the requirement that deg(xa) < 2t. Hence, any monomial xa with

at least one exponent equal to 0 cannot be an element of D(t).

Lemma 5.2. For a given monomial xa in D(t), if deg(xa) = 2t − k, then xa is

divisible by (x1x2 · · ·x2n+1)
k.

Proof. Let xa ∈ D(t) such that deg(xa) = 2t − k, and suppose that xa is not

divisible by (x1x2 · · ·x2n+1)
k. This means that there exists an i0 such that ai0 < k.

Moreover, since xa ∈ (D(t)), we must have aj > 0 for all j.

If i0 is odd, consider minimal vertex covers

V1 = {x1, x3, . . . , xi0 , xi0+1, xi0+3, . . . , x2n}
and

V2 = {x2, x4, . . . , xi0−1, xi0 , xi0+2, xi0+4, . . . , x2n+1}.
If i0 is even, use

V1 = {x1, x3, . . . , xi0−1, xi0 , xi0+2, . . . , x2n}
and

V2 = {x2, x4, . . . , xi0 , xi0+1, xi0+3, . . . , x2n+1}.
In order for xa to be in D(t), it must be true that wVj (x

a) ≥ t for j = 1, 2. 
When i0 is odd, this means that a1 + a3 + · · ·  + ai0 + ai0+1 + · · ·  + a2n ≥ t and 
a2 + a4 + · · ·  + ai0−1 + ai0 + ai0+2 + · · ·  + a2n+1 ≥ t (and similarly if∑i20nis+1

even). 
Combining these, we see 2t ≤ ai0 +(a1 +a2 +a3 + · · ·+a2n+1) =  ai0 +(  s=1 as) =  
2t − k + ai0 < 2t, a contradiction.

The following corollary partially answers [9, Conjecture 15] in the affirmative. 
Note that this is a restatement of [5, Theorem 4.13].

Corollary 5.1. Let I = I(C2n+1). Then I(t) = It for 1 ≤ t ≤ n.

Proof. If m ∈ D(t), then deg(m) < 2t. Since there are 2n + 1  > 2t variables, at 
least two of them must have exponents equal to 0, contradicting Lemma 5.1. Thus, 
D(t) = ∅.

A recent paper of Galetto, Geramita, Shin, and Van Tuyl [10] introduced the 
notion of symbolic defect to measure the difference between the symbolic power
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I(t) and ordinary power It. For a given m, the symbolic defect sdefect(I,m) is

the number µ(m) of minimal generators F1, F2, . . . , Fµ(m) such that I(m) = Im +

(F1, F2, . . . , Fµ(m)). Corollary 5.1 thus implies that sdefect(I(C2n+1), t) = 0 for all

t satisfying 1 ≤ t ≤ n.

Corollary 5.2. Let I = I(C2n+1). Then sdefect(I, n + 1) = 1. In particular,

I(n+1) = In+1 + (x1x2 · · ·x2n+1).

Proof. Let m ∈ D(n + 1). Then 2n + 1 ≤ deg(m) < 2n+ 2, and by Lemma 5.1,

each of the 2n + 1 variables must divide m. Therefore, m = x1x2 · · ·x2n+1. Thus,

I(n+1) = In+1 + (x1x2 · · ·x2n+1).

Recall that, if 0 �= I � S = k[x1, x2, . . . , xr] is a homogenous ideal, the minimal

degree of I, denoted α(I), is the least degree of a nonzero polynomial in I. In

particular, if I is an edge ideal, α(I) = 2, and α(Is) = 2s for any s ≥ 1. In general,

if α(I(t)) < α(Is), we may conclude that I(t) �⊆ Is, but the converse need not hold.

When I = I(C2n+1), however, it does, as the next lemma demonstrates.

Lemma 5.3. Let I be the edge ideal of an odd cycle. Then α(I(t)) < α(Is) if and

only if I(t) �⊆ Is.

Proof. The forward direction is clear. For the converse, suppose that α(I(t)) ≥
α(Is), and recall

I(t) = (m | for all minimal vertex covers V ′, wV ′(m) ≥ t).

As It ⊆ I(t), we note that 2t = α(It) ≥ α(I(t)) ≥ α(Is) = 2s. Thus, if m ∈
I(t), wV ′(m) ≥ t ≥ s and deg(m) ≥ α(I(t)) ≥ α(Is) = 2s, and we observe

I(t) ⊆ (m | deg(m) ≥ 2s and for all minimal vertex covers V ′, wV ′(m) ≥ s)

= (L(s))

= Is,

which completes the proof.

Despite providing a condition which guarantees containments of the form I(t) ⊆
Is, Lemma 5.3 does not actually compute α(I(t)), which is more delicate to compute

than computing α(Is). We next adapt Lemma 2.2 and the linear programming

approach of [1] to compute it. In order to do so, we make the following definition.

Definition 5.1. Fix a list of minimal vertex covers V1, V2, . . . , Vr for C2n+1 such

that |Vi| ≤ |Vi+1|. We define the minimal vertex cover matrix A = (aij) to be the

matrix of 0’s and 1’s defined by

aij =

{
0 if xj /∈ Vi,

1 if xj ∈ Vi.
(5.1)
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Remark 5.1. Note the minimum cardinality for a minimal vertex cover of C2n+1

is n+1; in fact, there are 2n+1 minimal vertex covers of size n+1. As we have seen,

there do exist minimal vertex covers of size greater than n + 1. These covers will

be accounted for in rows 2n+ 2 and higher of the minimal vertex cover matrix A.

We first seek a lower bound of α(I(t)) using linear programming. Let

t = s(n+ 1) + d, where 0 ≤ d ≤ n.

Consider the following linear program (�), where A is the minimal vertex cover

matrix,

b =



1

...

1


 , and c =



t

...

t


 :

minimize bTy

subject to Ay ≥ c and y ≥ 0.
(†)

We refer to (�) as the alpha program, and observe that if y∗ is the value which

realizes (†), we have α(I(t)) ≥ bTy∗.
Consider the following partition of A: let A′ be the submatrix of A consisting of

the first 2n+ 1 rows (and thus corresponding to the 2n+ 1 minimal vertex covers

which contain exactly n+1 vertices) and B the matrix consisting of the remaining

rows of A. We thus create the following sub-program of (†),

minimize bTy

subject to A′y ≥ c and y ≥ 0.
(‡)

Lemma 5.4. The value of (‡) is (2n+1)t
n+1 .

Proof. We claim that

y∗ =




t

n+ 1

t

n+ 1

...

t

n+ 1



, (5.2)

a (2n+1)× 1 column vector, is a feasible solution to (‡). Indeed, A′y∗ is a column

vector whose entries are all t = s(n+ 1)+ d, satisfying the constraint of the LP. In

this case, bTy∗ = (2n+1)t
n+1 .
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To show that this is the value of (‡), we make use of the fundamental theorem

of linear programming by showing the existence of an x∗ which produces the same

value for the dual linear program:

maximize cTx

subject to (A′)Tx ≤ b and x ≥ 0.
(�)

Specifically, let

x∗ =




1

n+ 1

1

n+ 1

...

1

n+ 1



.

As the rows of (A′)T again have exactly n+ 1 1’s, we see (A′)Tx∗ ≤ b is satisfied,

and it is straightforward to check that cTx∗ = bTy∗ = (2n+1)t
n+1 .

Lemma 5.5. The value of (†) is bounded below by (2n+1)t
n+1 .

Proof. Observe that (†) is obtained from (‡) by (possibly) introducing additional

constraints. Thus, the value of (†) is at least the value of (‡), which is (2n+1)t
n+1 .

Proposition 5.1. For all t ≥ 1, α(I(t)) = 2t− 	 t
n+1
.

Proof. Let t = s(n+ 1) + d, where 0 ≤ d ≤ n. By Lemma 5.5, we see that α(I(t))

is bounded below by the value of (†), i.e. α(I(t)) ≥ (2n+1)t
n+1 = (2n+1)(s(n+1)+d)

n+1 =

(2n + 1)s + 2d − d
n+1 . As 0 ≤ d

n+1 < 1, it is enough to find an element of degree

(2n+ 1)s+ 2d in I(t). We claim that

m = xs+d
1 xs+d

2 xs
3x

s
4 · · ·xs

2n+1

is such an element. Note that any minimal vertex cover V ′ (and hence minimal

prime of I) will contain one of x1 and x2, and at least n− 1 (if it contains both x1

and x2) or n (if it contains only one of x1 and x2) other vertices.

In the former case, wV ′(m) ≥ 2(s + d) + s(n − 1) = s(n + 1) + 2d ≥ t, and so

m ∈ I(t). In the latter case, wV ′(m) ≥ (s + d) + sn = s(n+ 1) + d = t, and again

we see m ∈ I(t).

Thus, α(I(t)) is an integer satisfying (2n + 1)s + 2d − d
n+1 ≤ α(I(t)) ≤ (2n +

1)s+ 2d, whence α(I(t)) = (2n+ 1)s+ 2d = 2(n+ 1)s+ 2d− s = 2t− s− 	 d
n+1
 =

2t− 	s+ d
n+1
 = 2t− 	 t

n+1
.
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Recall that, given a nontrivial homogeneous ideal I ⊆ k[x1, x2, . . . , x2n+1], the

resurgence of I, introduced in [3], is the number ρ(I) = sup {m/r | I(m) �⊆ Ir}.
Theorem 5.1. If I = I(C2n+1), then ρ(I) = 2n+2

2n+1 .

Proof. Let T = {m/r | I(m) �⊆ Ir}, and suppose that I(m) �⊆ Ir. By Lemma 5.3,

α(I(m)) < α(Ir). Since we know α(Ir) = 2r and α(I(m)) = 2m− 	 m
n+1
 by Propo-

sition 5.1, it follows that 2m−	 m
n+1
 < 2r, and that 2m− m

n+1 ≤ 2m−	 m
n+1
 < 2r.

Thus 2m− m
n+1 < 2r, and we conclude that m

r < 2n+2
2n+1 .

Claim. If m/r ∈ T , then (m+ 2n+ 2)/(r + 2n+ 1) ∈ T .

Proof of Claim. By Lemma 5.3, it is enough to show that α(I(m+2n+2)) <

α(Ir+2n+1). By Proposition 5.1, we have

α(I(m+2n+2)) = 2(m+ 2n+ 2)−
⌊
m+ 2n+ 2

n+ 1

⌋

= 2m+ 4n+ 4−
⌊

m

n+ 1
+

2n+ 2

n+ 1

⌋

= 4n+ 2 +

(
2m−

⌊
m

n+ 1

⌋)

= 4n+ 2 + α(I(m))

< 2(2n+ 1) + α(Ir)

= α(Ir+n+1).

Letm0 = r0 = n+1 and a0 = m0

r0
and observe that I(m0) �⊆ Ir0 . Then recursively

define ak = mk

rk
where mk = mk−1 + 2n+ 2 and rk = rk−1 + 2n+ 1. By the claim

above, ak = mk/rk ∈ T . From this recursive definition, we obtain the explicit

formula ak = n+1+k(2n+2)
n+1+k(2n+1) , and conclude that ρ(I) = 2n+2

2n+1 .

Recall that Corollaries 5.1 and 5.2 imply, for I = I(C2n+1), that

sdefect(I, t) =

{
0 if t ≤ n,

1 if t = n+ 1.

Next, we explore additional terms in the symbolic defect sequence. Our general 
approach is to rely on the decomposition described in Corollary 4.1. In the parlance 
of our work, the symbolic defect is the size of a minimal generating set for the ideal 
(D(t)). When n + 2  ≤ t ≤ 2n + 1, the elements of D(t) have degree equal to 2t − 1 
by Proposition 5.1, so it suffices to count them.

Lemma 5.6. Let t satisfy n+2  ≤ t ≤ 2n+1. Then  if  m ∈ D(t),m/(x1x2 · · ·x2n+1) 
is the product of exactly t − n − 1 edge monomials.
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Proof. Let m ∈ D(t), Thus, m is divisible by the product of at most t − 1 edge

monomials. Since deg(m) = 2t − 1 and α(I(t)) = 2t − 1 > 2(t − 1) = α(It−1) by

Lemma 5.3, m ∈ It−1, and therefore m is divisible by exactly t−1 edge monomials.

Thus, an optimal factorization of m is

m = xi0e
b1
1 eb22 · · · eb2n+1

2n+1 , where
∑

bi = t− 1.

That is, m has a single ancillary with exponent 1.

Without loss of generality, assume that the ancillary of m is x1 (if it is not, an

appropriate permutation of the indices and exponents can be applied to make it

x1). Write m = x1e
b1
1 eb22 · · · eb2n+1

2n+1 and x1x2 · · ·x2n+1 = x1e2e4 · · · e2n. Assume that

b2k = 0 for some k ≥ 1, and consider the minimal vertex cover

V = {x2, x4, . . . , x2k, x2k+1, x2k+3, . . . , x2n+1}.
We observe that wV (m) = b1 + b2 + · · ·+ b2k−1 + b2k + b2k + b2k+1 + · · ·+ b2n+1 =

b2k +
∑

bi = 0 +
∑

bi = t− 1, which contradicts the assumption that m ∈ D(t).

Thus, b2k ≥ 1 for all k ≥ 1, which allows us to write

m = (x1e2e4 · · · e2n)eb11 eb2−1
2 eb33 · · · eb2n−1

2n e
b2n+1

2n+1 .

Finally, we see that

m/(x1x2 · · ·x2n+1) = eb11 eb2−1
2 eb33 · · · eb2n−1

2n e
b2n+1

2n+1

is the product of t− n− 1 edge monomials.

Theorem 5.2. Let I = I(C2n+1). Then, for t satisfying n + 2 ≤ t ≤ 2n + 1, we

have

sdefect(I, t) =

((
2n+ 1

t− n− 1

))
,

where
((

2n + 1
t − n − 1

))
denotes multichoose.

Proof. As stated above, we wish to compute the size of a minimal generating set 
of (D(t)). For n +2  ≤ t ≤ 2n + 1, this means counting the number of monomials of 
degree 2t − 1 in  D(t).

By Lemma 5.6, the monomial p = m/x1x2 · · ·x2n+1 is the product of exactly (t− 
1) − n edge monomials. Thus, we may factor any m ∈ D(t) as m = x1x2 · · ·x2n+1p, 
where p is the product of exactly t − n − 1 edge monomials.

Conversely, suppose that m = x1x2 · · ·x2n+1p, where  p is the product of exactly 
t−n−1 edge monomials. Since deg(m) =  2t−1 and, if V is any minimal vertex cover 
of C2n+1, we have wV (m) =  wV (x1x2 · · ·x2n+1)+  wV (p) ≥ n + 1 + t − n − 1 =  t, 
where wV (p) ≥ t − n − 1 follows from the fact that p ∈ It−n−1 by definition; 
thus, m ∈ D(t). Therefore, to count the monomials in D(t), it suffices to count all 
monomials p that are products of t − n − 1 edge monomials.
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We can visualize this problem by counting the number of ways to place these

t − n − 1 “edges” around the cycle, assuming that we can place multiple edges

between the same two vertices. By definition, this is

sdefect(I, t) =

((
2n+ 1

t− n− 1

))
.

In particular,

sdefect(I(C2n+1), n+ 2) = 2n+ 1.

6. An Additional Containment Question

Our proof that I(t) = It+(D(t)) does not hold for any graph other than a cycle, as

it relies on the fact that each path between ancillaries is disjoint from every other

path. This is not true in general. This leads naturally to the following question.

Question 6.1. Let G be a graph on the vertices V = {x1, x2, . . . , xd} containing an
odd cycle. Suppose I = I(G) is the edge ideal of G in R = k[x1, x2, . . . , xd], and let

L(t) andD(t) retain their usual definitions with respect to G. Does I(t) = It+(D(t))

for all t ≥ 1?

The following example answers Question 6.1 in the negative.

Consider the graph G defined by V (G) = {x1, x2, x3, x4, x5, x6, x7} and E(G) =

{x1x2, x2x3, x3x4, x4x5, x5x1, x1x6, x6x7}, and let m = x2
1x

2
2x

2
3x

2
4x

2
5x

2
7. Observe

that m /∈ I6, but as every minimal vertex cover V of G contains three of

x1, x2, x3, x4, x5, we have wV (m) ≥ 2 · 3 = 6. Thus, I6 �= (L(6)).

However, we observe in the following two theorems that It = (L(t)) for certain

classes of graphs.

One case in which Question 6.1 holds is the case in which G is an odd cycle

with one additional vertex connected to exactly one vertex of the cycle.

Theorem 6.1. Let G be a graph consisting of 2n+2 vertices and 2n+2 edges such

that 2n + 1 of them form a cycle and the remaining edge connects the remaining

vertex to any existing vertex of the cycle. Further, let I be the edge ideal of G

and let L(t) and D(t) retain their usual definitions with respect to G. Then I(t) =

It + (D(t)).

Proof. Without loss of generality, consider the cycle formed by x1, . . . , x2n+1 with

e2n+2 = x1x2n+2 being the newly added edge.

Let m be a monomial expressed in optimal form m = xa1
1 xa2

2 · · ·xa2n+2

2n+2

eb11 eb22 · · · eb2n+2

2n+2 , and recall that b(m) =
∑

bi. As with the cycle, if It = (L(t)),

it will follow that I(t) = It + (D(t)).

By Lemma 4.1 we know that It ⊆ (L(t)) so we must only show the reverse 
containment. Let m �∈ It (which implies that b(m) < t). Lemma 4.2 allows us to 
consider only cases where m either has multiple ancillaries or has a single ancillary

1
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of degree at least 2. We will construct a minimal vertex cover V ′ of G such that

wV ′(m) = b(m) < t.

First, assume that x2n+2 is the only ancillary of m, and observe that a2n+2 ≥ 2.

We may write m as m = x2n+2e
b1
1 eb22 · · · eb2n+2

2n+2 x
a2n+2−1
2n+2 . It cannot be true that

bi ≥ 1 for all i ∈ {1, 3, 5, . . . , 2n+1}, because it would then be possible to divide m

by some monomial p = x2n+2e1e3 · · · e2n+1x2n+2 which must be in optimal form by

Lemma 3.1; however, in this case, p = e2n+2e2e4 · · · e2ne2n+2, contradicting that p

was in optimal form. Thus, at least one b2j+1 is 0. Then construct V ′ as follows:

(1) If b1 = 0, let

V ′ = {x1, x2, x4, . . . , x2n}.
Then wV ′(m) = (b2n+1+b2n+2+b1)+(b1+b2)+(b3+b4)+ · · ·+(b2n−1+b2n) =

b1 +
∑2n+2

i=1 bi = 0 +
∑2n+2

i=1 bi = b(m) < t.

(2) If b2j+1 = 0 for some j > 0, let

V ′ = {x1, x3, x5, . . . , x2j+1, x2j+2, x2j+4, x2j+6, . . . , x2n}.
Then wV ′(m) = (b2n+1+ b2n+2+ b1)+ (b2+ b3)+ · · ·+(x2j +x2j+1)+ (x2j+1 +

x2j+2) + · · ·+ (b2n−1 + b2n) = b2j+1 +
∑2n+2

i=1 bi = 0 +
∑2n+2

i=1 bi = b(m) < t.

Now suppose that all ancillaries of m are among the set {x1, x2, . . . , x2n+1}.
By adapting the argument from Theorem 4.1, we may assume that there is ei-

ther one ancillary with exponent at least 2, or that there are multiple ancillar-

ies. Use the construction in the proof of Theorem 4.1 to decompose the subgraph

C2n+1 of G as H1, H2, . . . , Hr. Define mC2n+1 = xa1
1 · · ·xa2n+1

2n+1 e
b1
1 · · · eb2n+1

2n+1 , i.e.

mC2n+1 = m/(x
a2n+2

2n+2 e
b2n+2

2n+2 ). The proof of Theorem 4.1 provides minimal subcovers

S1, S2, . . . , Sr such that S = ∪Sq and wS(mC2n+1) =
∑2n+1

i=1 bi.

If x1 ∈ S, then S covers G and wS(m) = wS(mC2n+1) + b2n+2 =
∑2n+2

i=1 bi =

b(m) < t. In this case, we may let V ′ = S.

On the other hand, if x1 /∈ S, let V ′ = S ∪ {x2n+2}. Then wV ′(m) = wS(m) +

b2n+2 =
∑2n+2

i=1 bi = b(m) < t.

Next, assume that the ancillaries of m are x2n+2 and at least one xj in the 
cycle (where j �= 1; if j = 1, we may write x2n+2x1 = e2n+2, contradicting the 
assumption that m is in optimal form). Use the construction of Theorem 4.1 to 
decompose the cycle into subgraphs H1, H2, . . . , Hr and note that x1 is a vertex in 
Hr. Observe that since x1 is not ancillary, x1 ∈/ Hi for any i �= r. Let the vertices 
of Hi be represented by {x�i , x�i+1, . . . , x�i+1 }, where x�1 , . . . , x�r are ancillaries, 
and we wraparound with x�r+1 representing x�1 . For all i �= r, the proof of The-
orem 4.1 gives a construction of a minimal vertex subcover Si with the required 
properties. Now construct a subgraph Hr

′ of G as follows: V (Hr
′ ) = V (Hr)∪{x2n+2} 

and E(Hr
′ ) =  EHr ∪ {{x1, x2n+2}}. Decompose Hr

′ as two induced subgraphs Hr
′
a 

and Hr
′
b 
of G on the vertices {x�r , . . . , x1, x2n+2} and {x2n+2, x1, . . . , x�1 }. We  ob-

serve that we may now use the construction in the proof of Theorem 4.1 to build 
minimal covers of Hr

′
a 
and Hr

′
b 
containing x1 (and not x2n+2) whose union gives
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a cover Sr of H ′
r. Given mr = x

a�r

�r
x
a�1

�1
x
a2n+2

2n+2 e
b�r
�r

e
b�r+1

�r+1 · · · eb2n+2

2n+2 e
b1
1 · · · eb�1−1

�1−1 , note

that wS′
r
(mr) = b(mr). Then the union V ′ = ∪r

i=1Si has the required property that

wV ′(m) = b(m).

In all cases, m /∈ L(t), and, by extension, m /∈ (L(t)).

We also verify that the answer to Question 6.1 is positive when G is a complete

graph. Thus, additional study is needed to identify the precise graph-theoretic prop-

erty for which Question 6.1 has an affirmative answer.

Theorem 6.2. Let R = k[x1, . . . , xn] and let Kn denote the complete graph on

{x1, . . . , xn}. Further, let I = I(Kn) and L(t) and D(t) maintain their definitions

as above. Then I(t) = It + (D(t)).

Proof. Let ei,j denote the edge between xi and xj such that i < j. We will show

that It = (L(t)). By Lemma 4.1, we must only show (L(t)) ⊆ It. Let m �∈ It (which

implies that b(m) < t), and recall that Lemma 4.2 allows us to consider only cases

where m either has multiple ancillaries or has a single ancillary of at least degree

2. Let m = xa1
1 · · ·xan

n e
b1,2
1,2 · · · ebn−1,n

n−1,n be in optimal form. Then m has at most 1

ancillary because if xai

i and x
aj

j were both ancillaries, then m could be expressed

as

m = xa1
1 · · ·xai−1

i · · ·xaj−1
j · · ·xan

n e
b1,2
1,2 e

b1,3
1,3 · · · ebi,j+1

i,j · · · ebn−1,n

n−1,n .

Thus m has exactly 1 ancillary and it must have a degree of at least 2.

Without loss of generality, let xa1
1 be the ancillary of m. Note that bi,j = 0 if

i, j �= 1. If this was not the case, m could be expressed in a more optimal form as

m = xa1−2
1 · · ·xan

n e
b1,2
1,2 e

b1,3
1,3 · · · eb1,i+1

1,i · · · eb1,j+1
1,j · · · ebi,j−1

i,j · · · ebn−1,n

n−1,n .

Let V ′ = {x2, . . . , xn}. Observe that V ′ covers Kn and

wv′(m) = wv′ (x
b1,2+b2,3+b2,4+···+b2,n
2 + x

b1,3+b2,3+b3,4+···+b3,n
3 + · · ·

+ xb1,n+b2,n+b3,n+···+bn−1,n
n )

= wv′ (x
b1,2+0+···+0
2 + x

b1,3+0+···+0
3 + · · ·+ xb1,n+0+···+0

n )

=

n∑
j=2

b1,j

=
n∑

j=2

b1,j +
n−1∑
i=2

n∑
j=i+1

bi,j

=

n−1∑
i=1

n∑
j=i+1

bi,j

= b(m).
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Thus wv′(m) = b(m) < t, so m �∈ L(t) and by the same argument, no divisor of m

is in L(t), which means m �∈ (L(t)).

Therefore, It = (L(t)). Because I(t) = (L(t)) + (D(t)) by Corollary 4.1, this

leads to the desired result that I(t) = It + (D(t)).
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