9-21-2018

Neuropsychological Aspects of Aging: Implications for Assessment & Intervention

Bruce Vermeer
Dordt College, bruce.vermeer@dordt.edu

Follow this and additional works at: https://digitalcollections.dordt.edu/faculty_work

Part of the Psychology Commons

Recommended Citation
Vermeer, Bruce, "Neuropsychological Aspects of Aging: Implications for Assessment & Intervention" (2018). Faculty Work Comprehensive List. 972.
https://digitalcollections.dordt.edu/faculty_work/972

This Conference Presentation is brought to you for free and open access by Digital Collections @ Dordt. It has been accepted for inclusion in Faculty Work Comprehensive List by an authorized administrator of Digital Collections @ Dordt. For more information, please contact ingrid.mulder@dordt.edu.
Neuropsychological Aspects of Aging: Implications for Assessment & Intervention

Keywords
neuropsychology, aging, psychological tests, mental health services

Disciplines
Psychology

Comments
Presented at the annual South Dakota Psychological Association Conference in Sioux Falls, South Dakota on September 21, 2018.

This conference presentation is available at Digital Collections @ Dordt: https://digitalcollections.dordt.edu/faculty_work/972
Neuropsychological Aspects of Aging: Implications for Assessment & Intervention

Bruce H. Vermeer, Psy.D.
Associate Professor of Psychology
Dordt College
Disclosures

• Employee of Dordt College
Overview

- Identify primary brain regions & describe their central functions
- Describe some of the “normal” neuropsychological changes that occur with advancing age
- Develop a broader understanding of most common aging-related Neurocognitive Disorders & their characteristic signs / symptoms
- Identify at least one key aspect of each primary type of Neurocognitive Disorder through basic neurocognitive screening
- Identify key treatment-, referral-, & continuum-of-care considerations / options for those struggling with neurocognitive impairment
Although completion of this workshop will NOT make you a qualified neuropsychologist, it WILL give you clinically useful information and tools for appropriate neurocognitive screening of older adults within the scope of your current practice.
Older Adults in South Dakota

- In 2017, approx. 20% of South Dakota residents were ≥ 60 years old (≈ 174,000)

- Future Projections (U.S. Census Bureau 2009 estimates):
 - 2020 ≈ 22.5% of pop.
 - 2030 ≈ 27.5% of pop.
The Central Nervous System

Neurons

- 50-100 billion throughout CNS (approx. 20 billion in neocortex alone)
- Most all present *at birth*
- Can move & grow
- No replication of cells
- Each can receive 100,000 + contacts
- Starting in our 20’s, we naturally lose ≈ 10,000-100,000/day

Neurons - 2

• Neural Impulse (Action Potential) = *Electrochemical* Process
• Action potential expends energy & electromagnetic “fields” (glucose, oxygen, blood flow)
 ➔ Basis of neuroimaging technology (CT, MRI, PET, etc.)
Glial Cells

- Likely >100 billion in neocortex alone
- Do *not* transmit information...
- ...Instead, implicated in synaptic functioning & neural signaling
- Provide
 -- Structural support
 -- Nutritional & scavenger functions
 -- Release of growth factors

“Normal” Brain Aging

- Aging-related decline begins in one’s 20’s-30’s
- Cortical atrophy evident by 40’s
- Decreased Gray Matter Volume:
 - Reduced dendrite length / arborization
 - Fewer neocortical synapses
- Decreased White Matter Volume
 ≡ Most signif. overall brain shrinkage
- Some senile plaques & neurofibrillary tangles

Lobes of the Brain

General Lobe Functions

Frontal Lobe
- movement
- thinking initiation
- reasoning (judgement)
- behaviour (emotions)
- memory
- speaking

Parietal Lobe
- knowing right from left
- sensation
- reading
- understanding spacial relationships

Occipital Lobe
- vision
- colour blindness

Temporal Lobe
- understanding language
- behaviour
- memory
- hearing

Brain stem
- breathing
- blood pressure
- heartbeat
- swallowing
- alertness/sleep
- body temperature
- digestion

Cerebellum
- balance
- coordination
- fine muscle control

Neurocognitive Domains (DSM-5)
American Psychiatric Association (2013)

A. Learning & Memory
B. Complex Attention
C. Executive Function
D. Language
E. Perceptual-Motor
F. Social Cognition
• Slowed *information processing speed* implicated in many “normal” cognitive changes

• Education level, etc. influence “brain reserve capacity” & cognitive preservation into later years ➔ Cognitive Reserve

• Number of potentially confounding research variables increase with advancing subject age…

 ...So, following data must be discerned carefully (is not exhaustive)
A. Learning & Memory

• Long-Term
 • Autobiographical
 • Semantic (Context-free; general knowledge of symbols & concepts + the rules for manipulating them)

• Short-Term
 • Verbal—Nonverbal
 • Immediate – Delayed
 • Recall – Recognition
A. Learning & Memory - 2

• “Normal” Aging Effects:
 • Mild word-finding difficulty (esp. proper names)
 • Immediate short-term mem. affected slightly
 • Acquisition < retention
 • Short-term nonverbal mem. typically more compromised than short-term verbal mem.
 • Recognition mem. retained well
 • Implicit & procedural mem. fairly robust
B. Complex Attention

• Sustained
• Divided
• Selective
• Processing Speed

• “Normal” Aging Effects:
 • Simple span intact into 80’s
 • Slower responses & more errors on tasks of divided attn.
 • Difficulty shifting attn. when given an invalid cue
 • Deficits in sustained & selective attn. + distractibility
C. Executive Function

• Abstraction / Reasoning
• Decision-Making
• Mental Flexibility / Planning
• Working Memory

• “Normal” Aging Effects:
 • Reasoning w/ familiar material good (yet more concrete)...but compromised w/ unfamiliar, complex material
 • Abstraction declines (concept formation, too—but in 80’s)
 • Working mem. declines
D. Language

• Expressive:
 • Naming
 • Fluency
 • Word-finding
 • Grammar
 • Syntax

• Receptive:
 • Comprehension
D. Language - 2

• “Normal” Aging Effects:
 • Verbal abilities retained well, generally
 • Verbal fluency changes (variable research results)
 • Verbal comprehension changes (variable research results)
E. Perceptual-Motor

• Visual Perception
• Visuoconstruction
• Praxis

• “Normal” Aging Effects:
 • Object- & shape-recognition preserved well
 • Visuo-perceptual judgment declines gradually / steadily into 90’s (basic analysis OK, but integration / reasoning decline)
 • Diminished accuracy & complexity on some construction tasks
F. Social Cognition

• Emotional Recognition
• Social & Behavioral Propriety

• “Normal” Aging Effects:
 • Generally well-preserved
 • Declining perceptual abilities may negatively influence emotional recognition
Cognitive Aging & Intellectual Ability

Lezak et al. (2012)

• Crystallized Intelligence:
 • Over-learned, well-practiced, familiar…
 ...Skills, ability, & knowledge
 • Gains through 60’s, stable through 70’s

• Fluid Intelligence:
 • Reasoning & problem-solving for which familiar solutions are not available
 • Slow decline until late 50’s – early 60’s, then pace of decline increases
Neurocognitive Screening: Characteristics
Roebuck-Spencer, Glen, Puente, Denney, Ruff, Hostetter, & Bianchini (2017)

• Narrow in scope
• Minimal administrator training needed
• Brief administration (< 30 min.)
• Provides
 o Early identification of those at risk of decline
 o Indication of need for referral for additional evaluation / treatment
 o Means of monitoring symptom progression or treatment response
• Does NOT provide definitive diagnosis
Neurocognitive Screening: Procedures

- Obtain / Review Medical Documentation from PCP, incl.
 - Recent, relevant primary care medical notes
 - Neuroimaging reports (if avail.)
 - Specialist reports (neurology, psychiatry, etc.)

- Thorough, Comprehensive Evaluative Interview
 - Interview family / others when possible, also
 - The best available strategy you have (likely)!
Neurocognitive Screening: Procedures - 2

- Select Screening Instrument(s), *e.g.*
 - Montreal Cognitive Assessment Test (MoCA) (www.mocatest.org)
 - Mini-Mental Status Examination (MMSE)
 - Geriatric Depression Scale – Long Form (GDS)
 - Geriatric Anxiety Scale (GAS) (www.uccs.edu/agingandmentalhealthlab/scale)
Neurocognitive Screening: Procedures - 3

• Recommend Referral(s) p.r.n.
 - Neuropsychology
 - Radiology (neuroimaging)
 - Neurology
 - Psychiatry

• Treatment p.r.n.
 - Client
 - Spouse
 - Family
Abnormal Cognitive Decline in Older Adults: The “3 D’s”

- Differential Diagnosis / Rule-Out’s
 - Delirium
 - Depression
 - Dementia (Major Neurocognitive Disorder)
Delirium: DSM-5 Criteria

A. A disturbance in attention (i.e., reduced ability to direct, focus, sustain, and shift attention) and awareness (reduced orientation to the environment).

B. The disturbance develops over a short period of time (usually hours to a few days), represents a change from baseline attention and awareness, and tends to fluctuate in severity during the course of a day.

C. An additional disturbance in cognition (e.g., memory deficit, disorientation, language, visuo-spatial ability, or perception).

D. The disturbances in Criteria A and C are not better explained by another preexisting, established, or evolving neurocognitive disorder and do not occur in the context of a severely reduced level of arousal, such as coma.

E. There is evidence from the history, physical examination, or laboratory findings that the disturbance is a direct physiological consequence of another medical condition, substance intoxication or withdrawal, or exposure to a toxin, or is due to multiple etiologies.

©American Psychiatric Association (2013). All rights reserved.
Delirium: Key Characteristics

- *Acute* onset (typically)
- *Clouding or loss of consciousness (usu. unexplained)*
- Impaired cognition (incl. memory & language)
- Confused, “out of touch”, disoriented
- Hallucinations (poss.)
- *Course: Hours ➔ days (some forms = weeks ➔ months)*
 - Waxing/waning fairly common
- Typically caused by a medical condition…
Etiology of Delirium

• Encephalopathy due to…
 • Urinary tract infection (esp. older adults)
 • Dehydration
 • Medication reactions: Intolerance, interactions
 • Substance-induced (Note specific coding in DSM-5)
 • *High fever* (esp. children)
 • Sleep deprivation (excessive)
 • Etc.
Treatment & Prevention of Delirium

• Treatment
 • Address precipitating medical problems
 • Psychosocial interventions
 • Reassurance/comfort, coping strategies, inclusion of pt. in treatment decisions (when poss.)
• Prevention
 • Utilize proper medical care for illnesses
 • Emphasize proper use of, & adherence to, therapeutic drugs
“Dementia” ➔ Neurocognitive Disorder

- DSM-IV: “Dementia” & “Organic Mental Disorder”
 ➔ DSM-5: “Neurocognitive Disorder”

- Memory impairment no longer essential for diagnosis
- Includes range of disorders in which principal manifestation is an acquired loss of cognitive ability (objective decline from baseline) due to known (or assumed) brain damage or disease
“Dementia” ➔ Neurocognitive Disorder

- All age groups*
- Greater specification of behavioral symptoms / syndromes
- Active use of objective neurocognitive assessment data
- Increasing role of biomarkers in diagnosis (but not yet required)
Neurocognitive Disorder

- **Mild**
 - Cognitive Deficits approx. 1-2 SD’s below mean on neuropsychological testing
 - Cognitive deficits *do not* interfere w/ capacity for independence in daily activities
- **Major**
 - Cognitive Deficits > 2 SD’s below mean on neuropsych. testing
 - Cog. deficits *interfere* w/ independence in daily activities
Neurocognitive Disorder: Specifiers

• Differentiation *must be made* between “possible” & “probable”

• Medical disease / problem that is *causing* the disorder *must be specified*...
Types (Sources) of Neurocognitive Disorder

- Due to Alzheimer's Disease
- Frontotemporal
- Vascular
- With Lewy bodies
- Due to Traumatic Brain Injury
- Substance/medication induced
- Due to HIV infection
- Due to prion disease
- Due to Parkinson’s Disease
- Due to Huntington’s Disease
- Due to another medical condition
- Due to multiple etiologies
- Unspecified
Subjective Cognitive Decline (SCD)

• Older adults express concern about perceived decline in cognitive abilities—yet, assessment WNL + IADL’s remain intact (Jessen et al., 2014)
• “Worried well”? (Tuokko & Smart, 2018) or “CRS”?
 o Not necessarily—Seems distinct
• SCD ➔ Increased risk of AD when relevant biomarkers present
• Preclinical Alzheimer’s Disease (up to 15 yrs before AD) (Sperling et al., 2011)
PET Amyloid & Tau Imaging
Sperling, Mormino, & Johnson (2014)

Slide used by gracious permission of principal author.
Alzheimer’s Disease (AD)

- **Most common** form of Major Neurocog. Disorder
- Identified by Dr. Alois Alzheimer in 1906 (Auguste D.)
- Char. by *progressive* brain deterioration & impaired cognitive function (esp. memory)
- **Primary** Cortical Structures Involved:
 - Hippocampus
 - Thalamus
 - Temporal Lobe
 - Basal Forebrain
Notable AD Characteristics

• Plaques (Senile…): Clusters of *amyloid beta 42*
 o Aβ\textsubscript{42} very sticky \Rightarrow easily forms plaques *among* axon terminals
 o Interferes w/ neural transmission \Rightarrow *Eventual* neuron death

• Neurofibrillary Tangles: Abnormal accumulations of *tau*
 o Tangles form *inside of* neurons \Rightarrow Neuron death
Image: https://www.alz.org/braintour/plaques_tangles.asp
Heredity & Alzheimer’s Disease

- A key aspect of AD (accounts for just > 50% of cases)
- Four Known Genes (& associated chromosome):
 - APP (21)
 - Presenilin 1 (14)
 - Presenilin 2 (1)
 - APOE ε4 (19) \(\rightarrow\) Interacts w/ tau to exacerbate pathogenic cascade (Shi et al., 2017)
- Early-Onset AD: Related to APP, Presenilin 1, & APOE-ε4 genes
- Late-Onset AD: Related to Presenilin 2 gene
Detecting / Diagnosing AD

- Autopsy: Most Common / Definitive
- PET Scan
- Comprehensive Medical Evaluation (*a rule-out process*)
- Neuropsychological Evaluation / Neurocognitive Screening:
 - Look for insidious onset & gradual progression
 - Anosognosia common (⇒ Denial)
 - Short-term *verbal* memory impairment often primary symptom
 - Word-finding problems common
Current Alzheimer’s Medication Options

• Acetylcholinesterase Inhibitors
 • A.k.a. Aricept, Razadyne, Exelon
 • Inhibits acetylcholinesterase from breaking down ACh, thereby *preserving* neuronal transmission
 • Effectively *slows progression* of AD— but does not stop it
Current Alzheimer’s Medication Options - 2

- NMDA [N-methyl-D-aspartate] Blockers
 - A.k.a. Namenda
 - Limits NMDA receptor sensitivity to glutamate
 - Mechanism: Some dying AD neurons trigger release of glutamate ➔ excitotoxicity (overstimulation of NMDA receptors) ➔ neuron death
 - Also FDA indicated for Neurocog. Disorder w/ Lewy Bodies (DLB)
Vascular Neurocognitive Disorder

- **Second** most common form of Neurocognitive Disorder
- **Cause:**
 - Damage to, or deterioration of, the vascular integrity of brain
- **Sources:**
 - Cerebrovascular disease, cardiac disease, hypertension, high cholesterol, smoking, etc.
- **Variable pattern** of neurocognitive impairment
Vascular Neurocognitive Disorder - 2

• “Probable” if (≥ 1 of following)...
 • Clinical criteria supported by neuroimaging evidence of significant lesions, attributed to cerebrovascular disease
 • Neurocog. syndrome is temporally related to ≥ 1 documented cerebrovascular events
 • Clinical & genetic evidence of cerebrovascular disease is present
Stroke: Primary Types

• Ischaemic
 • Arterial clogging / blockage
 • TIA if < 24 hrs. (usu. w/ symptom remission), CVA / Stroke if > 24 hrs.

• Hemorrhagic
 • Arterial rupture ➔ Intracranial bleeding
Neuroimaging of Ischaemic Stroke

Subcortical Ischaemic Vascular Disease

Detecting / Diagnosing Vascular Neurocognitive Disorder

• Documented Evidence of Cerebrovascular Disease
• *Stepwise progression* of cognitive impairment common
• Neuropsychological Evaluation / Neurocognitive Screening:
 o Look for temporal causation
 o Look for correlation between lesion location(s) & affected cognitive function
 o Client often (not always) aware of problems
Neurocognitive Disorder w/ Lewy Bodies

• *Third* most common form of Neurocog. Disorder
 o A.k.a. DLB or Lewy Body Disease
• Apparent Hybrid: Symptoms / characteristics of Parkinson’s Disease & Alzheimer’s Disease…
 • Episodes of seemingly unexplained clouding or loss of consciousness
 • Episodes of seemingly unexplained falling
Neurocognitive Disorder w/ Lewy Bodies - 2

- Apparent Hybrid [cont.]
 - Spontaneous development of “parkinsonism” (tremors, etc.) after dev’t of cognitive problems (often starting w/ executive dysfunction)
 - Recurrent visual hallucinations (well-formed, detailed)
 - Severe neuroleptic sensitivity
 - REM Sleep Behavior Disorder criteria met
Lewy Bodies

• Abnormal protein accumulation *inside* neurons
• Found in pts w/ Parkinson's disease (PD), Lewy Body Disease (Neurocognitive Disorder due to…), & a few others
• Identified under microscope when histology is performed on the brain…
Lewy Bodies

Image: https://en.wikipedia.org/wiki/Lewy_body
Detecting / Diagnosing Neurocognitive Disorder w/ Lewy Bodies

- Documented Evidence of Clouding / Loss of Consciousness and / or Unexplained Falling
- Histologic Evidence of Lewy Bodies
- Neuropsychological Evaluation / Neurocognitive Screening:
 - Look for relatively intact short-term memory functioning early
 - Executive dysfunction often an early issue
 - Do cognitive problems precede Parkinsonism?
References - 1

