1-4-2017

Specifications Grading in a First Course in Abstract Algebra

Mike Janssen
Dordt College, mike.janssen@dordt.edu

Follow this and additional works at: http://digitalcollections.dordt.edu/faculty_work
Part of the Algebra Commons, and the Higher Education Commons

Recommended Citation
http://digitalcollections.dordt.edu/faculty_work/630

This Conference Presentation is brought to you for free and open access by Digital Collections @ Dordt. It has been accepted for inclusion in Faculty Work: Comprehensive List by an authorized administrator of Digital Collections @ Dordt. For more information, please contact ingrid.mulder@dordt.edu.
Specifications Grading in a First Course in Abstract Algebra

Abstract
Specifications grading offers an alternative to more traditional, points-based grading and assessment structures. In place of partial credit, students are assessed pass/fail on whether or not they have achieved the learning outcomes being assessed on a given piece of work according to certain specifications, with limited opportunities for revision of non-passing work. This talk will describe the learning outcomes and specifications grading system I used in my Fall 2016 abstract algebra course, as well as student responses.

Keywords
abstract algebra, testing, learning, college students

Disciplines
Algebra | Higher Education

Comments
Presented at the 2017 Joint Mathematics Meetings in Atlanta, Georgia, on January 4, 2017.

This conference presentation is available at Digital Collections @ Dordt: http://digitalcollections.dordt.edu/faculty_work/630
SPECIFICATIONS GRADING IN A FIRST COURSE IN ABSTRACT ALGEBRA

Mike Janssen
Dordt College
JMM 2017, Atlanta GA
January 4, 2017
INTRODUCTION
SPECIFICATIONS GRADING
Restoring Rigor, Motivating Students, and Saving Faculty Time

Linda B. Nilson
FOREWORD BY CLAUDIA J. STANNY
What do you want students to learn, and how will you know when they’ve learned it?
What do you want students to learn, and how will you know when they’ve learned it?

Or:

What are the (explicit) student learning targets, and what assessments will you use to gauge student progress toward mastering these learning targets?
ASSESSING THE WORK

Grade your assessments Pass/No Pass according to set specifications, allowing sufficient opportunities for revision, according to whether students have met the learning targets.

• Solutions to proofs and problems should be free of errors.
• If you wish to use a result we have not proved in class or you have not proved on an earlier homework problem, it should be stated as a lemma and proved independently.
• All solutions must be typeset using the free, open-source mathematical typesetting system, \LaTeX.
ASSESSING THE WORK

Grade your assessments Pass/No Pass according to set *specifications*, allowing sufficient opportunities for revision, according to whether students have met the learning targets. For example:

- Solutions to proofs and problems should be free of errors.
- If you wish to use a result we have not proved in class or you have not proved on an earlier homework problem, it should be stated as a lemma and proved independently.
- All solutions must be typeset using the free, open-source mathematical typesetting system, **\LaTeX**.
ASSESSING THE WORK

Grade your assessments Pass/No Pass according to set specifications, allowing sufficient opportunities for revision, according to whether students have met the learning targets. For example:

- Solutions to proofs and problems should be free of errors.
- If you wish to use a result we have not proved in class or you have not proved on an earlier homework problem, it should be stated as a lemma and proved independently.
- All solutions must be typeset using the free, open-source mathematical typesetting system, \LaTeX.

The specifications are designed to encourage self-regulation: metacognition, strategic planning, and evaluating personal progress against a standard.
• Assign final grades by counting the amount/depth of work completed at a satisfactory level; more hurdles or higher hurdles (or both)?

• Students are encouraged to choose their grade goal and only do the work they need to do in order to achieve that goal.
MY COURSE
The mathematical content on which I wanted students to demonstrate competency.
The mathematical content on which I wanted students to demonstrate competency.

- **Example**: “R5 – I can determine whether a given subset of a ring is an ideal.”
- **Example**: “G2 – I can verify elementary properties of groups using basic definitions.”
Each content objective assessed twice:

1. First time: 1–3 problems on regular weekly homework assignments
 - Collaboration encouraged
 - Problems tagged with learning target (usually one target/problem)
 - Must earn passing designations on all problems tagged with a given learning target in order to earn credit
 - One free revision allowed on learning targets given good faith effort

2. Second time: 1 problem on take-home exam
 - No collaboration allowed
 - One free revision allowed on learning targets given good faith effort
DEMONSTRATING CONTENT COMPETENCY

Each content objective assessed twice:

1. First time: 1–3 problems on regular weekly homework assignments
 - Collaboration encouraged
 - Problems tagged with learning target (usually one target/problem)
 - Must earn passing designations on all problems tagged with a given learning target in order to earn credit
 - One free revision allowed on learning targets given good faith effort
Each content objective assessed twice:

1. First time: 1–3 problems on regular weekly homework assignments
 - Collaboration encouraged
 - Problems tagged with learning target (usually one target/problem)
 - Must earn passing designations on all problems tagged with a given learning target in order to earn credit
 - One free revision allowed on learning targets given good faith effort

2. Second time: 1 problem on take-home exam
 - No collaboration allowed
 - One free revision allowed on learning targets given good faith effort
Mathematical Practice Targets (5)

The habits I want my students to develop.
The habits I want my students to develop.

- **Example:** “P3 – I worked on a homework problem outside of class with at least one other person on at least three different occasions.”
 Demonstrated competency by noting it in their writeup.
The habits I want my students to develop.

- **Example**: “P3 – I worked on a homework problem outside of class with at least one other person on at least three different occasions.” Demonstrated competency by noting it in their writeup.

- **Example**: “P4 – I was stuck on a problem but got unstuck by reading the book on at least three different assignments.” Demonstrated competency by writing a footnote explaining in 2–3 sentences what they had learned by reading the book.
FEEDBACK AND REVISIONS

• Copious feedback given on initial submissions – where it went wrong, and a nudge in the direction of a correct solution
• Revisions due one week after initial feedback, re-uploaded to LMS
• Students given tokens to use to extend deadlines, get a second (or third) revision, or revise non-GFE work
Final Grades (Simplified)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Homework (43)</th>
<th>Exams (38)</th>
<th>Reflections</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>41</td>
<td>27</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>39</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>37</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>31</td>
<td>14</td>
<td>3</td>
</tr>
</tbody>
</table>
PLANNING FOR THE FUTURE
• Refine learning targets: clearer and more specific.
• Introduce higher-order tasks for A/B students
• Incorporate active/flipped learning work (GFE)
• Enforce the specifications early and often (and ruthlessly!); this is where the rigor lives.
• Teach the class once traditionally first and write learning targets as you go for next time (what do you really value?)
• Submit work electronically when possible to more easily manage the flow of student work in and out and back in
• Leave time for revision at the end of the semester (little/no new material or work the last week)
THANKS!

mike.janssen@dordt.edu