
Dordt Digital Collections Dordt Digital Collections 

Faculty Work Comprehensive List 

5-2016 

General Approach for Combining Diverse Rare Variant Association General Approach for Combining Diverse Rare Variant Association 

Tests Provides Improved Robustness Across a Wider Range of Tests Provides Improved Robustness Across a Wider Range of 

Genetic Architectures Genetic Architectures 

Brian Greco 
University of Michigan-Ann Arbor 

Allison Hainline 
Vanderbilt University 

Jaron Arbet 
University of Minnesota 

Kelsey Grinde 
University of Washington - Seattle Campus 

Alejandra Benitez 
University of California - Berkeley 

See next page for additional authors 

Follow this and additional works at: https://digitalcollections.dordt.edu/faculty_work 

 Part of the Genetics and Genomics Commons 

Recommended Citation Recommended Citation 
Greco, B., Hainline, A., Arbet, J., Grinde, K., Benitez, A., & Tintle, N. L. (2016). General Approach for 
Combining Diverse Rare Variant Association Tests Provides Improved Robustness Across a Wider Range 
of Genetic Architectures. European Journal of Human Genetics, 24 (5), 767. https://doi.org/10.1038/
ejhg.2015.194 

This Article is brought to you for free and open access by Dordt Digital Collections. It has been accepted for 
inclusion in Faculty Work Comprehensive List by an authorized administrator of Dordt Digital Collections. For more 
information, please contact ingrid.mulder@dordt.edu. 

http://www.dordt.edu/
http://www.dordt.edu/
https://digitalcollections.dordt.edu/
https://digitalcollections.dordt.edu/faculty_work
https://digitalcollections.dordt.edu/faculty_work?utm_source=digitalcollections.dordt.edu%2Ffaculty_work%2F615&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/27?utm_source=digitalcollections.dordt.edu%2Ffaculty_work%2F615&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1038/ejhg.2015.194
https://doi.org/10.1038/ejhg.2015.194
mailto:ingrid.mulder@dordt.edu


General Approach for Combining Diverse Rare Variant Association Tests General Approach for Combining Diverse Rare Variant Association Tests 
Provides Improved Robustness Across a Wider Range of Genetic Architectures Provides Improved Robustness Across a Wider Range of Genetic Architectures 

Abstract Abstract 
The widespread availability of genome sequencing data made possible by way of next-generation 
technologies has yielded a flood of different gene-based rare variant association tests. Most of these 
tests have been published because they have superior power for particular genetic architectures. 
However, for applied researchers it is challenging to know which test to choose in practice when little is 
known a priori about genetic architecture. Recently, tests have been proposed which combine two 
particular individual tests (one burden and one variance components) to minimize power loss while 
improving robustness to a wider range of genetic architectures. In our analysis we propose an expansion 
of these approaches, yielding a general method that works for combining any number of individual tests. 
We demonstrate that running multiple different tests on the same dataset and using a Bonferroni 
correction for multiple testing is never better than combining tests using our general method. We also find 
that using a test statistic that is highly robust to the inclusion of non-causal variants (Joint-infinity) 
together with a previously published combined test (SKAT-O) provides improved robustness to a wide 
range of genetic architectures and should be considered for use in practice. Software for this approach is 
supplied. We support the increased use of combined tests in practice-- as well as further exploration of 
novel combined testing approaches using the general framework provided here--to maximize robustness 
of rare-variant testing strategies against a wide range of genetic architectures. 

Keywords Keywords 
next-generation sequencing, genome-wide association studies, case-control 

Disciplines Disciplines 
Genetics and Genomics 

Authors Authors 
Brian Greco, Allison Hainline, Jaron Arbet, Kelsey Grinde, Alejandra Benitez, and Nathan L. Tintle 

This article is available at Dordt Digital Collections: https://digitalcollections.dordt.edu/faculty_work/615 

https://digitalcollections.dordt.edu/faculty_work/615


Title: A general approach for combining diverse rare variant association tests provides 

improved robustness across a wider range of genetic architectures 

Running title: General approach for combining rare variant tests 

Authors: Brian Greco1, Allison Hainline2, Jaron Arbet3,4, Kelsey Grinde5,6, Alejandra 

Benitez7, Nathan Tintle8 

1. Department of Biostatistics, University of Michigan, Ann Arbor, MI 

2. Department of Biostatistics, Vanderbilt University, Nashville, TN 

3. Department of Statistics, Winona State University, Winona, MN 

4. Department of Biostatistics, University of Minnesota, Minneapolis, MN 

5. Department of Mathematics, Statistics and Computer Science, St. Olaf College, 

Northfield, MN 

6. Department of Biostatistics, University of Washington, Seattle, WA 

7. Department of Biostatistics, U.C. Berkeley, Berkeley, CA 

8. Department of Mathematics, Statistics and Computer Science, Dordt College, 

Sioux Center, IA 

Corresponding author: 

Dr. Nathan Tintle, Department of Mathematics, Statistics and Computer Science, Dordt 

College, 498 4th Ave. NE, Sioux Center, IA 51250. Phone: 712-722-6264. Fax: 712-722-

6035. Email: nathan.tintle@dordt.edu 

  

mailto:nathan.tintle@dordt.edu


Abstract (250 word max; currently 239) 

The widespread availability of genome sequencing data made possible by way of next-

generation technologies has yielded a flood of different gene-based rare variant association 

tests. Most of these tests have been published because they have superior power for 

particular genetic architectures. However, for applied researchers it is challenging to know 

which test to choose in practice when little is known a priori about genetic architecture. 

Recently, tests have been proposed which combine two particular individual tests (one 

burden and one variance components) to minimize power loss while improving robustness 

to a wider range of genetic architectures. In our analysis we propose an expansion of these 

approaches, yielding a general method that works for combining any number of individual 

tests. We demonstrate that running multiple different tests on the same dataset and using a 

Bonferroni correction for multiple testing is never better than combining tests using our 

general method. We also find that using a test statistic that is highly robust to the inclusion 

of non-causal variants (Joint-infinity) together with a previously published combined test 

(SKAT-O) provides improved robustness to a wide range of genetic architectures and 

should be considered for use in practice. Software for this approach is supplied. We 

support the increased use of combined tests in practice-- as well as further exploration of 

novel combined testing approaches using the general framework provided here--to 

maximize robustness of rare-variant testing strategies against a wide range of genetic 

architectures. 

Key words: next-generation sequencing; genome-wide association studies; case-control 



Introduction: 

Numerous tests of genotype-phenotype association for rare variants have been proposed, 

all of which attempt to combine signals at multiple variant sites within a gene into a single, 

powerful gene-based test of association. According to recent work, which test is most 

powerful is highly dependent upon the true genetic architecture of the phenotype 1,2. The 

challenge for the applied researcher is to know which test to choose, given limited 

information about the true genetic architecture of disease. 

A general understanding of test behavior can be obtained by noting the existence of two 

broad classes of tests (length and joint) among the many tests proposed to date1. Length 

tests (alternatively: burden, collapsing, linear; for example, CMC3) attempt to enhance the 

genotype-phenotype signal in a region of interest by collapsing variant measurements into 

a single measure of rare variant “burden,” which is then tested for association with a 

phenotype of interest. They are called length tests because they can be interpreted 

geometrically as testing for a difference in the lengths of the minor allele frequency vectors 

between cases and controls. These tests tend to be powerful when the proportion of causal 

variants is large and the effects of the causal variants are similar1. Joint tests (alternatively: 

variance components, quadratic; for example, SKAT4) combine the strength of evidence of 

individual phenotype-variant associations across the variants in a region of interest and 

tend to be powerful when there are larger proportions of non-causal variants and there is 

more variation in the effects of causal variants1. Joint tests are so named because they 

simultaneously test for differences between the lengths of the minor allele frequency 



vectors in cases and controls, as well as testing for a non-zero angle between the vectors. A 

full discussion and classification of existing tests is available elsewhere1,2. 

Recent papers have proposed combining test statistics across both the length and joint 

classes to yield more powerful test statistics 1,5–8. Results from these papers demonstrate 

how to combine a single version of a length test with a single version of a joint test5, how 

to use a weighting strategy to find the optimal weighted combination of two particular 

length and joint test statistics6, and that different weighted combinations of particular 

length and joint tests can be more powerful than single tests for different genetic 

architectures1. Overall, these combined testing approaches show improved power against a 

wider range of genetic architectures when compared to using either statistic separately 1,5–7. 

In general, any approach that combines a single length test and a single joint test will have 

a limited range of situations in which it is powerful. In particular, the combined test can 

only be powerful in cases where either of the two individual tests being combined is 

powerful. The combined test will lack power where the two tests being combined, 

simultaneously, lack power (but potentially where another, powerful, alternative test 

exists). For example, a recent paper suggested novel test statistics which may provide 

increased power when a large proportion of non-causal variants is present in the gene1, but 

current test-combining strategies have not evaluated this class of alternatives. Thus, more 

general test-combining strategies are needed in order to potentially yield more powerful 

results when the component tests being combined are powerful for a wide range of genetic 

architectures. 

 



In this paper we will demonstrate how to combine an arbitrarily large and diverse set of 

gene-based rare variant test statistics using an efficient permutation strategy. We then 

simulate a wide range of genetic architectures and evaluate the performance of two 

different methods of combining tests (Fisher’s, minimum p-value) when combined tests 

involve many different types of tests, including those using a variety of norms. We explore 

which combinations of tests are ideal and when.  

Methods 

General strategy for combining tests 

We propose the following approach for combining p-values from k different gene-based 

rare variant tests. For a gene of interest, calculate 𝒇+and 𝒇−, where 𝒇+ is a vector of 

observed allele frequencies, (𝑓1
+, 𝑓2

+, … , 𝑓𝑚
+), in the cases, across the m variant sites in the 

gene and where 𝑓𝑗
+ =

𝑐𝑗
+

2𝑁+
, letting 𝑐𝑗

+indicate the total number of minor alleles in the cases 

at site j, and 𝑁+ be the number of cases in the sample. Vector 𝒇− holds similar definitions 

for the controls. 

After computing 𝒇+and 𝒇−, find the p-value for each of the k different gene-based rare 

variant tests, yielding a vector of p-values, p=(𝑝1, 𝑝2, … , 𝑝𝑘), for each gene of interest (see 

Rare variant tests section for details). The vector p is used to generate a test statistic, 

Sk=f(p), which summarizes the strength of evidence across p; essentially, the combined 

strength of evidence of genotype-phenotype association across the entire set of k tests. We 

consider two different ways of computing Sk. The first is the Fisher’s combined p-value 



test statistic and is computed as Fk= ∑ −2log(𝑝𝑖)
𝑘
𝑖=1 . We note that if the k tests were 

mutually independent, the distribution of Fk would follow a chi-squared distribution; 

however, that is likely not the case in practice. Instead, we assess significance of Fk using 

the permutation strategy described in the following section. 

The second summary statistic is the minimum p-value, Min(p), with significance assessed 

using the permutation strategy described in the following section. For comparison, we also 

compute significance of the Min(p) statistic using a Bonferroni correction approach where 

the summary statistic is deemed significant if Min(p) is less than 𝛼/𝑘, for some a priori 

specified 𝛼. 

Description of the permutation strategy 

For a general univariate summary statistic Sk of vector p (in our case either Fk or Min(p)), 

statistical significance can be assessed by permuting phenotype status, performing k tests 

on the permuted data, recomputing Sk on each permutation, and calculating the percent of 

times that permuted values of Sk are greater than the observed Sk.  Recently5, an efficient 

permutation strategy for assessing the significance of a test Sk with k=2 (one length and one 

joint) test was proposed. We extend the approach for any number of gene-based tests k of 

any type. The extended approach is to: (1) Calculate the observed value of Sk as a function 

of p, where p is the vector of p-values for each of the i=1,…,k tests being combined. (2) 

Permute the phenotype and re-compute test statistics, 𝑡𝑖
∗(𝑙), under permutation for each of 

the i=1,…k tests and for each of l=1,…,P permutations (where P is large), yielding 𝑡𝑖
∗ =

(𝑡𝑖
∗(1), 𝑡𝑖

∗(2),… , 𝑡𝑖
∗(𝑃)), a vector of permuted test statistics for test i. Note: These are the 



same P permutations for all tests. (3) Calculate 𝑅𝑎𝑛𝑘(𝑡𝑖
∗(𝑙)), the rank of each of the test 

statistics in vector 𝑡𝑖
∗ for each of the i=1,…,k tests, where 𝑅𝑎𝑛𝑘(𝑡𝑖

∗(𝑙)))=1 for the largest 

value of  𝑡𝑖
∗(𝑙) and Rank(𝑡𝑖

∗(𝑙)))=P for the smallest value of 𝑡𝑖
∗(𝑙). (4) Calculate an 

empirical p-value for each of the permuted test statistics as 𝑝𝑖
∗(𝑙) = 𝑅𝑎𝑛𝑘(𝑡𝑖

∗(𝑙))/P. (5) An 

empirical null distribution (no genotype-phenotype association) for S is computed by 

calculating the value of Sk(l) from the vector of p-values 𝒑∗(𝒍) = (𝑝1(𝑙), 𝑝2(𝑙),… , 𝑝𝑘(𝑙)), 

for each permutation l=1,…,P. (6) The significance of Sk is computed by calculating the 

percentage of Sk(l) values that are larger than Sk, out of the set of P phenotype 

permutations.  

A few additional comments are worthwhile. First, the procedure can be modified in a 

straightforward manner for two-sided tests (either individual or combined), by looking at 

both tails of the empirical null distribution of statistics. Second, for individual tests based 

on asymptotic distributions, steps (3) and (4) are merely replaced by using the asymptotic 

distribution to calculate the 𝑝𝑖(𝑙). Finally, and importantly, we note that the use of the 

same P permutations in step (5) is needed in order to properly model the correlation 

structure between tests and generate an appropriate null distribution for Sk.  

Rare variant tests 

We explored combinations of different gene-based rare variant tests which were selected to 

represent a variety of different approaches for evaluating genotype-phenotype associations. 

We define ‖𝒙‖𝑝 = (∑ |𝑥𝑖|
𝑝𝑚

𝑗=1 )
1/𝑝

 as the p-norm for a vector 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑚). The 

individual rare variant tests we considered were: (1) Sequence Kernel Adaptive Test 



(SKAT) 4. SKAT is essentially equivalent to 𝑄𝑆 = ‖𝒇
+ − 𝒇−‖2

1 with an asymptotic 

distribution used for statistical significance-- a joint test using the 2-norm. (2) Combined 

Multivariate and Collapsing Test (CMC)3. When all variants are collapsed, CMC can be 

viewed as essentially equivalent to 𝑄𝐵 = ‖𝒇
+‖1 − ‖𝒇

−‖1
1 with significance assessed using 

an asymptotic distribution-- a length test using a 1-norm. In our analysis we collapsed all 

variants because our simulations focused on variants with population minor allele 

frequency less than 1%. (3) Sequence Kernel Adaptive Test-Optimal (SKAT-O) 6,7. SKAT-O 

combines SKAT and a general burden test (CMC) by the optimal weight ρ, such that  𝑄ρ =

ρ𝑄𝐵 + (1 − ρ)𝑄𝑆 yields the minimum p-value and uses an asymptotic distribution to 

assess statistical significance. (4) Length tests with different norms (L(p)) 1, which test for 

differences in the lengths of the minor allele frequency vectors between cases and controls. 

We considered four versions of length tests of the form 𝐿(𝑝) = ‖𝒇+‖𝑝 − ‖𝒇
−‖𝑝, with 

significance assessed via phenotype permutation. The four versions were generated by 

considering different values of the norm, p, p=1, 2, 4 and ∞, where ‖𝒙‖∞ = max (abs(xi)). 

(5) Joint tests with different norms (J(p)) 1, which simultaneously test for differences in the 

lengths and for a non-zero angle between the two allele frequency vectors. We considered 

four versions of joint tests of the form 𝐽(𝑝) = ‖𝒇+ − 𝒇−‖𝑝, with significance assessed via 

phenotype permutation. We used four different values of p, p=1, 2, 4 and ∞.  Higher 

normed tests are more robust to the inclusion of non-causal variants1. Thus, we considered 

a total of 11 individual gene-based variant tests (SKAT (a 2-norm joint test), SKAT-O (a 

combined test), CMC (a 1-norm length test), L(1), L(2), L(4), L(∞), J(1), J(2), J(4), J(∞). 



We then combined subsets of the 11 individual gene-based rare tests using both the 

Fisher’s and Min(p) approaches (see Methods: General strategy for combining tests 

section). The 8 different combinations of tests we considered were: (1) Length tests with 

different norms (L(1), L(2), L(4), L(∞)) (CT1), (2) Joint tests with different norms (J(1), 

J(2), J(4), J(∞)) (CT2),(3) Similar length tests (CMC, L(1)) (CT3), (4) Similar joint tests 

(SKAT, J(2)) (CT4), (5) Typical length-joint combined test (SKAT, CMC) (CT5), (6) 

Length and joint tests across norms (L(1), L(2), L(4), L(∞),(J(1), J(2), J(4), J(∞)) (CT6), 

(7) Length and joint with some norms (L(1), L(4), J(1), J(4) (CT7), (8) More robust SKAT-

O (SKAT-O, J(∞)) (CT8). A brief rationale for the inclusion of each test is provided in 

Table 1. 

Simulations 

We conducted two main simulation studies as part of our analysis. In the first simulation, 

we explored the general behavior of the Fisher’s and Min(p) approaches across a variety of 

different numbers of tests, correlation structures and power settings using generalized 

gene-based test statistics. In the second simulation we simulated data according to a priori 

specified genetic disease models and applied the gene-based rare variant tests of 

association described in the previous section. 

Simulation #1: Investigating the behavior of Min(p) and Fisher’s 

Data was simulated from multivariate normal random variables, T~𝑀𝑉𝑁(𝝁, 𝜮) (MVN = 

Multivariate Normal), using R9 where 𝝁 = (𝜇1, 𝜇2, … , 𝜇𝑘) and the 𝑘×𝑘 covariance matrix 



𝜮 =

(

 

1 𝜌1,2
𝜌2,1 1

… 𝜌1,𝑘
𝜌2,3 …

… 𝜌3,2
𝜌𝑘,1 …

1 𝜌𝑘−1,𝑘
𝜌𝑘,𝑘−1 1 )

 . Each multivariate normal sample represents a vector 

of test statistics, T, from k different gene-based rare variant tests, where H0: 𝝁 = 𝟎, Ha: at 

least one of 𝜇1, 𝜇2, … , 𝜇𝑘 > 0and 𝜌𝑖,𝑗 is a measure of correlation between tests i and j. We 

consider all possible combinations of the following parameters: (1) Number of tests, k, 

equal to 2, 4, 6, 10 and 20 (2) 𝜌𝑖,𝑗 = 0, 0.25, 0.50, 0.75, 0.90 and 0.99 between the test 

statistics of two tests i,j. Note: we specified the correlation 𝜌 between test statistics, 

however the corresponding correlations between p-values are quite similar (details not 

shown). (3) (a) H0: 𝝁 = (𝜇1 = 0, 𝜇2 = 0,… , 𝜇𝑘 = 0)  (b) An Ha where all tests perform 

equally well: 𝝁 = (𝜇1 = 2, 𝜇2 = 2,… , 𝜇𝑘 = 2). We note that the approximate power of 

each individual test, i, under the alternative hypothesis (𝜇𝑖 = 2) is equal to 

𝑃(𝑍 > 𝑧𝛼 − 𝜇𝑖) = 𝑃(𝑍 > −0.355) = 0.64, where Z ~ Normal(0,1) at a significance level 

of 5% (𝑧𝛼 = 1.645) for a one-sided upper-tailed test, representing a moderately powered 

test. We also considered lower significance levels of 0.01, 0.001 and 0.0001, which yield 

individual test power of 37%, 14% and 4%, respectively. 

After generating 10,000 multivariate normal random samples for each combination of 

simulation parameters, we computed the p-value of each test statistic, Ti, for each of the 

10,000 samples, by finding 1 − 𝜙(𝑇𝑖) where 𝜙() is the cumulative distribution function 

(CDF) of a standard, normal distribution. We then applied Min(p) and Fisher’s methods to 

each set of p-values, with significance assessed by comparing alternative hypothesis values 

of Min(p) and Fisher’s statistics to the simulated distributions of these statistics under the 



null hypothesis. The power of each approach (Min(p) and Fisher’s) for each simulation 

setting is estimated by dividing the fraction of significant (α=0.05, 0.01, 0.001 or 0.0001) 

statistics by 10,000 (the number of independent samples). We then conducted a follow-up 

simulation in which we varied the number of tests, k (k=2, 4, 6, 10 and 20), fixed 𝜌𝑖,𝑗 = 0 

between two tests i,j and then varied the number of tests for which 𝜇𝑖 = 2 from 1 to 10, 

with the remaining tests having 𝜇𝑖 = 0. Full results from these simulations, which include 

observed correlations between p-values for all settings illustrating the approximately 

equivalent correlations between test statistics and p-values, are available in Supplemental 

Tables 1a-1c. 

Simulation #2- Investigating the behavior of combinations of gene-based rare variant tests 

across different genetic disease models 

We simulated data to represent a variety of different genetic disease models. In all 

simulations, we considered a sample size of 2,000 individuals split evenly between cases 

and controls. We then simulated data across all possible combinations of the following 

parameters: (1) Number of single nucleotide variants (SNVs) (32 or 64) (2) Proportion of 

non-causal SNVs (0, ¼, ½, ¾, 7/8, 15/16, 31/32, 63/64, 1) (3) Proportion of causal SNVs 

that increase disease risk (0, ¼, ½, ¾, 1), with the remaining causal SNVs causing a 

decline in disease risk (4) Relative risk of causal, risk-increasing SNVs (1.1, 1.5 and 2.0). 

To investigate impact on test performance in the presence of risk-reducing SNVs, some 

simulation settings included risk-reducing SNVs with relative-risk 0.5. Furthermore, SNV 

minor allele frequencies were simulated in a three to one ratio of less common (0.1% 

population minor allele frequency) to more common (1% minor allele frequency) SNVs 



spread evenly across all non-causal and causal SNVs. We note that when the number of 

SNVs is not divisible by 4, a single 1% minor allele frequency SNV is assigned before 

generating up to 3 additional 0.1% minor allele frequency SNVs. Thus, there were a total 

of 2 (number of SNVs) x 9 (proportion of non-causal) x 5 (proportion of risk increasing 

SNVs) x 3 (relative risk of risk increasing SNVs) settings, of 270 possible simulation 

settings. However, some of the combinations are redundant or impossible; removing these 

cases yields 197 total simulation settings considered in our analysis.  

Five-hundred samples were generated at each simulation setting, with each of the 20 

individual tests and each of the 11 combined tests applied to each sample, and separate p-

values for Min(p) (permutation p-value) and Fisher’s for each combined test. Empirical 

power estimates are computed as the percentage of p-values less than 0.05 (nominal alpha), 

giving power estimates within 2√
0.5(1−0.5)

500
≈ 4% of the true power 95% of the time. For 

the Bonferroni testing approach, we deem the test significant if at least one of the 

individual test p-values in the set is below the Bonferonni correct alpha value of 0.05/k. 

Where needed, 500 permutations were used to assess statistical significance for individual 

and combined tests.  

To further explore test performance at significance levels commonly used in practice, 

additional simulations were conducted. In particular, 16 of the settings described above 

were investigated using 50,000 permutations at significance levels of 10-4, 10-3 and 10-2. 

Fourteen of these settings represented situations in which causal variants were present (32 

total SNPs with 1,2 or 4 causal variants; 64 total SNPs with 1,2,4 or 8 causal variants), 



where all causal variants have RR=2 (7 cases) or 3 (7 cases); 200 simulations were 

conducted at each setting. Two settings represented situations in which no causal variants 

were present (32 total SNPs and 64 total SNPs), and used 840 and 460 total simulations at 

each setting, respectively. 

Application 

As a proof of concept, we applied select gene-based tests to data from Genetic Analysis 

Workshop 17. The data consists of real genotype data (from the 1000 Genomes Project 

consortium) on which a disease phenotype was simulated10. We considered 25 genes which 

were known to contain causal variants for the simulated disease phenotype and showed 

variation in the sample of n=321 unrelated Asian subjects. Given the small sample size and 

low power in this dataset5, final disease status for each of the 321 individuals was averaged 

across 200 independent phenotype simulations, with individuals who were diseased in at 

least 100 of the 200 independent simulations identified as ‘diseased,’ and the rest not. As 

has been done previously5, we used a significance level of 0.05 for this analysis. 

Results 

General patterns in the performance of Min(p) and Fisher’s methods (Simulation #1) 

We start by exploring the general behavior of Min(p) and Fisher’s method across a generic 

set of k tests, with different correlation structure and test performance (Simulation #1 

described earlier). The goal of this analysis is to provide an intuitive sense of how the 

number of tests, correlation between tests and individual test performance is related to the 

performance of Min(p) and Fisher’s method in a well-understood environment. Detailed 



simulation results are provided in Supplemental Tables 1a-1c. Supplemental table 1a 

illustrates that the type I error rate is controlled across all simulation settings and 

significance levels. 

When all tests are powerful 

When all tests being combined have good power (64% at 𝛼 = 0.05), both the Fisher’s and 

Min(p) approaches yield increased power as the number of tests being combined increases. 

However, Fisher’s method tends to outperform Min(p), with the magnitude of the power 

gain for Fisher’s relative to Min(p) decreasing as the correlation between tests increases, 

and the power of combined, highly correlated tests equal to the power of a single test-- 

approximately 64% (see Supplemental Table 1b and Figure 1). In situations where all tests 

are powerful, Min(p) ignores the power from all the tests but one, forgoing the opportunity 

to improve the power by combining tests and yielding lower power overall as compared to 

Fisher’s approach. Similar results are observed for other significance levels. 

When some tests are powerful 

When we varied the number of powerful (good) tests (power=64% at 𝛼 = 0.05) and 

under-powered (bad) tests (power=5%=type I error rate) we found that Min(p) outperforms 

Fisher’s if there is only one good test in the set, with the magnitude of improvement 

increasing as the number of bad tests increases (for example, see Figure 2, similar results 

are observed for other significance levels, see Supplemental Table 1c.). When there are two 

good tests in the set, Fisher’s does better when there are few bad tests, but as more and 

more bad tests are added to the set, Min(p) gains an advantage over Fisher’s. In general, 

Min(p) outperforms Fisher’s when the proportion of bad tests in the set is large. The 



impact of correlation between tests on these relationships can be inferred from the previous 

section.  

Performance of combined tests on simulated phenotype-genotype data (Simulation #2) 

Type I error simulation 

The type I error simulation showed general control of the type I error rate across all 

individual tests and combined tests considered here, with the lone exception being the 

Bonferroni method, which was, as expected, often conservative. Detailed Type I error 

simulation results are in Supplemental tables 2a and 2b. Additional simulations at lower 

significance levels (1x10-2, 1x10-3, 1x10-4) also showed control of the type I error rate in all 

cases (detailed results not shown). 

Min(p) beats Bonferroni every time 

Across the 197 simulation settings and 8 combined tests (1576 possibilities; see 

Supplemental Table 3), as well as all follow-up simulations at lower significance levels, 

there were only 10 times where power of the Bonferroni approach exceeded the power of 

the Min(p) approach, doing so only minimally (ranging from 0.002 to 0.004); well within 

the range of expected variation due to simulation. Thus, it is safe to conclude that Min(p) 

will always be better than Bonferroni. We do not consider the Bonferroni approach in 

subsequent analyses. 

Improving a combined test with additional tests 



We explored 8 different combined tests. Rationale and summaries of performance are 

provided in Table 1. In general, the results of the second simulation study confirmed 

results of the first simulation study with regards to the use of Min(p) or Fisher’s and how 

many tests to combine. In short, (1) combining tests that are powerful in different 

situations will generally be advantageous (e.g., CT6, CT7 and CT8), (2) Min(p) 

outperforms Fisher’s combining method when there is a mix of powerful and non-powerful 

tests being combined (e.g., CT5, CT6, CT7) and (3) combining highly correlated tests has 

little benefit (e.g., CT2, CT3, CT4). These results held true even at lower significance 

levels (see Supplemental Table 4) 

Robust test statistic 

As shown in Table 1, CT8 yielded the best overall performance, with the Fisher’s method 

performing slightly better than the Min(p) method across all simulation settings; CT6 and 

CT7 also performed quite well. Across the 197 simulation settings, CT8 (combination of 

SKAT-O and J(∞)) yielded power no more than 5% smaller than SKAT-O power in 87.3% 

(Fisher’s; 172/197) and 83.2% (Min(p); 164/197) of simulation settings. The power of CT8 

was never worse than 10% less than SKAT-O power. However, the combined test was 

sometimes substantially better than SKAT-O, as shown in Table 2. In particular, since J(∞) 

is robust to the inclusion of high proportions of non-causal variants, CT8 is more robust to 

the inclusion of non-causal variants than SKAT-O alone. J(∞), however, performs more 

poorly than SKAT-O and most other tests when the proportion of causal variants in a gene 

is moderate (see Supplemental Table 3, which provides the full results for all simulation 

settings, for details). Finally, Figures 3 and 4 illustrate the performance of the methods at a 



low significance level, showing similar results at a relative risk of 2. We note that the 

power is not very high in this case. Supplemental figures 2 and 3 illustrate the same 

performance using a relative risk of 3, yielding larger power. 

The performance of the Fisher’s combination approach was generally better than 

the Min(p) approach of CT8 as shown in Tables 1 and 2. In a head to head comparison, the 

Fisher’s approach yielded  better power than the Min(p) approach in more than twice as 

many simulations (119 vs. 45 settings), though power gains were only modestly better 

(average power gain 1.8% vs. 1%), with a max power difference of only 5.2%. Table 2 

also illustrates the relatively good performance of CT6 and 7 in this subset of simulation 

settings.  

Application to data from Genetic Analysis Workshop 17 

The p-values for four tests (SKAT-O, J(∞)) and both the Fisher’s and Min(p) versions of 

CT8) which were applied to 25 genes containing at least one causal variant are provided in 

Supplemental Table 5.  Six genes are significant (p<0.05) using SKAT-O alone and four 

genes are significant using J(∞) alone (three genes are significant using both approaches), 

for a total of seven genes identified by at least one of the two individual testing methods.  

The Min(p) version of CT8 identified all seven of the genes as significant and Fisher’s 

identified five of the seven as significant, while the remaining two were borderline 

significant (p<0.07), demonstrating that the combined methods are robust. In particular, we 

note that the PIK3C3 gene was significant using the J(∞) approach (p=0.035), but not 



SKAT-O (p=0.056), and was significant for both combined tests (Min(p) p-value=0.041, 

Fisher’s p-value=0.035).  

Software 

Software written for R9 is available for free download on the research group’s software 

page (http://www.dordt.edu/academics/programs/math/statgen/software.shtml).  All 

individual and combined tests considered here are included. 

 

Discussion 

We have proposed a general and flexible method for combining different rare variant tests 

of association to potentially improve robustness across a wide range of genetic 

architectures while minimizing power loss through the addition of multiple tests. A naïve 

approach to combining tests is to use a Bonferroni correction after applying multiple 

different rare variant tests to the same data. However, Bonferroni is often conservative, 

especially when tests being combined are correlated, and we demonstrated that the Min(p) 

approach is always more powerful because it empirically estimates the appropriate 

correlation structure. Thus, in practice, researchers should never run multiple (k>1) gene-

based tests on the same dataset and then apply a stricter Bonferroni correction strategy 

(α/(k*genes)) to their dataset. The Min(p) approach proposed here will always be more 

powerful than such an approach. 

We also showed that while the Min(p) approach is sometimes optimal, the Fisher’s 

method offers advantages over Min(p) in some cases because it combines separate signals 



into a combined signal when tests are well-powered and the correlation between tests is 

low. However, we’ve shown that when combining tests with lower power, Min(p) 

improves to the point of being better than Fisher’s method in some cases. In short, Min(p) 

ignores the ‘noise’ of low powered tests, while Fisher’s averages low powered tests into 

the signal. Furthermore, as the correlation between well-powered tests increases, Min(p) 

also gains power relative to Fisher’s. Ultimately, the answer to whether Min(p) or Fisher’s 

provides more power is dependent upon the underlying power and correlation structure of 

the tests being combined. However, combining highly correlated tests is not advantageous 

either. The most benefit is obtained by combining disparate tests-- as we illustrated by 

combining J(∞) with SKAT-O--to yield a more robust and powerful test. Across 

simulation settings considered here the Fisher’s approach for the SKAT-O/ J(∞) combined 

test was somewhat more robust than the Min(p) approach and so is recommended for use 

in practice. 

More broadly than either Min(p) or Fisher’s, our method is flexible enough to 

consider any of the numerous other choices for Sk, which is simply a function of the vector 

of p-values from the k-tests being combined, p=(𝑝1, 𝑝2, … , 𝑝𝑘). We have focused on 

Fisher’s and Min(p) because they represent two extreme approaches: Fisher’s is a weighted 

average of all the p-values, and Min(p) only uses a single value from the vector. 

Furthermore, both approaches are popular since, when tests are independent, each has 

fairly well understood asymptotic properties. More research is needed to explore additional 

possibilities. We note that while we restricted our analysis to case-control study designs, 

the results are directly applicable to results for quantitative traits. 



A key advantage to the combined testing approach comes when evaluating multiple 

genes and/or multiple phenotypes. In these cases, a priori, there may be little information 

about which individual test is most powerful given the wide range of potential genetic 

architectures. The best test strategy will be one which provides an optimal tradeoff of 

power loss and robustness. Namely, for any particular genetic architecture, an individual 

test can be constructed with better power than any combined test. However, individual 

tests may be powerful against only a small set of genetic architectures. Thus, a combined 

test may trade off (vs. an individual test) small amounts of power against some genetic 

architectures for large improvements in power versus other genetic architectures. 

One area of application we have explored is the straightforward application of our 

approach to gene-based rare variant tests that use thresholds (e.g., CMC3 which thresholds 

on Minor Allele Frequency, or the Odds Ratio Weighted Sum Statistic11 with thresholds on 

empirical odds ratio) to generate variable threshold tests in a straightforward manner. In 

short, simply combine the same test across multiple thresholds to yield an optimally robust 

test (detailed results not shown).  

With this in mind, how should a researcher utilize combined tests in practice? Prior 

work5–7 has shown that combined tests can be considered ‘optimal,’ however, these 

approaches have been limited to combining L(1) and J(2) tests. In this paper we have 

shown that combining other disparate tests can be advantageous (e.g., combining SKAT-O, 

itself a combination of L(1) and J(2), with J(∞)). For example, we showed that the 

inclusion of a higher norm test can provide increased robustness to the inclusion of non-

causal variants. In practice, we recommend including J(∞) in a combined test with L(1) 



and J(2) (e.g., SKAT-O with J(∞)) to maximize robustness to the inclusion of non-causal 

variants in cases where little prior knowledge exists to prioritize potential causal SNPs 

and/or it is anticipated that a high proportion of SNPs included in the test may be non-

causal. However, further analysis of simulated data with larger sample sizes, additional 

variation in causal variant risk distribution, etc., and which builds on our analysis of real 

genotype data from Genetic Analysis Workshop 17, is warranted. This exploration is 

especially needed given recent results yielding moderately sized relative risks, even for 

rare variants, in practice.  

Conclusions 

Combined testing approaches offer a general and appealing alternative to individual, gene-

based rare variant tests of association which may be optimized only for particular genetic 

architectures. We have demonstrated that the loss of power from the addition of one or two 

disparate tests may be offset by improved power for a wider range of genetic architectures. 

We also identified a particular combined test with good properties. As additional, novel, 

rare-variant tests are developed they should be evaluated for possible combination with 

existing tests to yield maximally robust testing approaches. 
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Figures 

Figure 1. Power of combined testing approaches as the correlation between powerful 

tests increases.  

 

All k tests being combined have individual power of 64.5% at a significance level of 0.05. 

When combining multiple powerful tests, and no tests with low power, the Fisher’s method 

is always more powerful than the Min(p) method since all tests contribute to the power of 

the combined test for Fisher’s method, but only a single test contributes to the Min(p) 

approach. As the correlation between powerful tests increases all combined tests converge 

to the power of a single test (64.5%). In general, combining more powerful tests increases 

power. Similar patterns are observed with lower significance levels (see Supplemental 

Tables 1a-1c). 

  



Figure 2. Power of combined testing approaches as the number of poorly performing 

tests increases 

Of the k tests being combined either 1, 2 or 4 tests are ‘good’ (having power = 64.5%), 

while the remainder perform poorly (power = 5%, the type I error rate). When there is only 

one powerful test, the Min(p) method outperforms Fisher’s method, but when there are 

four ‘good’ (powerful) tests, Fisher’s test outperforms Min(p). The breakeven point is 

shown when there are two good tests and we see that Fisher’s is better when there are 10 or 

fewer tests, but Min(p) is better when there are 20 total tests being combined. This figure 

only illustrates cases where there is no correlation between tests. The impact of correlation 

between tests can be inferred from Figure 1. Similar patterns are observed with lower 

significance levels (see Supplemental Tables 1a-1c). 

  



Figure 3. Power of single and combined gene-based rare variant tests (32 SNVs) 

Power of five different tests (3 individual and 2 combined) in the presence of high 

percentage of non-causal variants and at a significance level of 1x10-4. The relative risk of 

the causal SNVs in the set of 32 SNVs is 2, with 1000 cases and 1000 controls. The 

combined test using either the Min(p) or Fisher’s approaches is a robust alternative to 

individual tests. 

 

Figure 4. Power of single and combined gene-based rare variant tests (64 SNVs) 

Power of five different tests (3 individual and 2 combined) in the presence of high 

percentage of non-causal variants and at a significance level of 1x10-4. The relative risk of 

the causal SNVs in the set of 64 SNVs is 2, with 1000 cases and 1000 controls. The 

combined test using either the Min(p) or Fisher’s approaches is a robust alternative to 

individual tests.  



Table 1. Overview of combined test rationale and performance  

Test Tests 

combined 

Rationale Avg. 

corr.1 

Observed 

Strengths 

Observed 

Weaknesses 

Overall 

performance2 

CT1 L(1), L(2), 

L(3), L(∞) 

Assess robustness 

against non-causal 

variants and tradeoff 

with number of tests 

combined 

0.53 Minimal Poor performance 

with risk-reducing 

variants 

Poor 

(Min(p): 

38.6%) 

(Fisher’s: 

47.2%) 

CT2 J(1), J(2), 

J(3), J(∞) 

Assess robustness 

against non-causal 

variants and tradeoff 

with number of tests 

combined 

0.87 Handles 

risk 

reducing 

variants 

Redundant Good 

(Min(p): 8.9%) 

(Fisher’s: 

7.9%) 

CT3 CMC, 

L(1) 

Assess impact of 

combining highly 

correlated tests 

0.92 Minimal Poor performance 

with risk-reducing 

variants; redundant 

Poor 

(Min(p): 

42.7%) 

(Fisher’s: 

42.2%) 

CT4 SKAT, 

J(2) 

Assess impact of 

combining highly 

correlated tests 

0.99 Handles 

risk 

reducing 

variants 

Redundant Good 

(Min(p): 7.4%) 

(Fisher’s: 

7.4%) 

CT5 SKAT, 

CMC 

Assess a ‘standard’ 

combination of tests 

0.46 Fairly 

robust 

Lacks robustness to 

high proportion of 

non-causal variants 

Good  

(Min(p): 7.5%) 

(Fisher’s: 

8.1%) 

CT6 L(1), L(2), 

L(3), 

L(∞),J(1), 

J(2), J(3), 

J(∞) 

Assess robustness 

against non-causal 

variants and tradeoff 

with number of tests 

combined 

0.54 Fairly 

robust 

Some poorly 

performing tests 

(e.g., length tests) 

make Fisher’s 

perform suboptimally 

Good 

(Min(p): 5.6%) 

(Fisher’s: 

9.2%) 

CT7 L(1), L(4), 

J(1), J(4) 

Assess robustness 

against non-causal 

variants and tradeoff 

with number of tests 

combined 

0.50 Fairly 

robust 

Fairly good 

performance, though 

Fisher’s performs a 

bit poorer due to 

length tests 

Very good 

(Min(p): 4.9%) 

(Fisher’s: 

6.5%) 

CT8 SKAT-O, 

J(∞) 

Assess ability to 

create a more robust 

SKAT-O 

0.77 More 

robust to 

inclusion 

of 

noncausal 

variants 

Slightly lower power 

than SKAT-O when 

few non-causal 

variants 

Very good 

(Min(p): 4.6%) 

(Fisher’s: 

3.0%) 

1. Average pairwise correlation across all pairs of tests in the combined test. See 

Supplemental Figure 1 for complete matrix of pairwise correlations. 

2. Percent of simulations in which method had at least 5% lower power than other methods. 



Table 2. Power of common gene-based rare variant tests and novel combined tests across select settings 

   Power 

   Single tests Combined tests 

Total 

number 

of 

variants 

Number of 

risk inc. 

variants 

(RR1) 

Number of 

risk dec. 

variants 

(RR1) 

CMC SKAT SKAT-

O 

J(∞) CT6:  

Min(p) 

CT6:  

Fisher’s 

CT7: 

Min(p) 

CT7: 

Fisher’s 

CT8:  

Min(p) 

CT8: 

Fisher’s 

64 

variants 

in the 

gene 

32 (2) 0 1 1 1 0.99 1 1 1 1 1 1 

16 (2) 0 0.85 0.97 0.988 0.926 0.988 0.994 0.99 0.996 0.986 0.984 

8 (2) 0 0.346 0.786 0.774 0.784 0.82 0.872 0.808 0.866 0.798 0.83 

4 (2) 0 0.122 0.416 0.338 0.548 0.506 0.52 0.44 0.428 0.504 0.502 

2 (2) 0 0.086 0.368 0.304 0.5 0.454 0.462 0.424 0.408 0.472 0.466 

1 (2) 0 0.1 0.392 0.322 0.514 0.488 0.53 0.442 0.432 0.478 0.496 

             

32 

variants 

in the 

gene 

16 (2) 0 0.986 0.99 0.996 0.944 0.996 0.998 0.994 0.996 0.994 0.996 

8 (2) 0 0.632 0.8 0.816 0.772 0.83 0.88 0.82 0.872 0.812 0.824 

4 (2) 0 0.206 0.546 0.526 0.602 0.602 0.622 0.574 0.586 0.584 0.596 

2 (2) 0 0.194 0.49 0.446 0.59 0.51 0.56 0.51 0.504 0.548 0.574 

1 (2) 0 0.132 0.494 0.426 0.58 0.554 0.58 0.52 0.528 0.536 0.558 

             

32 

variants 

in the 

gene 

24 (1.1) 8 (0.5) 0.066 0.322 0.266 0.22 0.256 0.214 0.268 0.212 0.266 0.29 

18 (1.1) 6 (0.5) 0.082 0.336 0.25 0.234 0.234 0.188 0.242 0.2 0.248 0.288 

12 (1.1) 4 (0.5) 0.05 0.184 0.134 0.134 0.122 0.114 0.126 0.108 0.154 0.164 

6 (1.1) 2 (0.5) 0.074 0.16 0.12 0.152 0.108 0.104 0.118 0.108 0.126 0.148 

3 (1.1) 1 (0.5) 0.074 0.152 0.126 0.144 0.132 0.13 0.136 0.122 0.138 0.146 

             

64 

variants 

in the 

gene 

48 (1.1) 16 (0.5) 0.108 0.518 0.418 0.248 0.348 0.302 0.362 0.35 0.364 0.392 

36 (1.1) 12 (0.5) 0.068 0.404 0.322 0.24 0.3 0.27 0.312 0.288 0.302 0.314 

24 (1.1) 8 (0.5) 0.052 0.254 0.208 0.19 0.2 0.162 0.204 0.174 0.214 0.232 

12 (1.1) 4 (0.5) 0.048 0.134 0.116 0.116 0.1 0.11 0.102 0.108 0.126 0.132 

6 (1.1) 2 (0.5) 0.07 0.086 0.07 0.086 0.078 0.078 0.072 0.08 0.07 0.088 

3 (1.1) 1 (0.5) 0.05 0.1 0.078 0.11 0.078 0.078 0.08 0.066 0.092 0.104 

Bold indicates tests that are within 5% of optimal for single tests or within 5% of optimal for combined tests. 

1RR=Relative risk of causal variants 

 



Supplementary Materials 

Supplemental Figure 1 – Correlation between p-values of different tests is considered across different genetic architectures. 

Joint tests and SKAT like tests are highly correlated, as are Length and CMC tests.  

Supplemental Figure 2 - Power of five different tests (3 individual and 2 combined) in the presence of high numbers of non-

causal variants and at a significance level of 1x10-4. The relative risk of the causal SNVs in the set of 32 SNVs is 3, with 1000 

cases and 1000 controls. The combined test using either the Min(p) or Fisher’s approaches is a robust alternative to individual 

tests. 

Supplemental Figure 3 - Power of five different tests (3 individual and 2 combined) in the presence of high numbers of non-

causal variants and at a significance level of 1x10-4. The relative risk of the causal SNVs in the set of 64 SNVs is 3, with 1000 

cases and 1000 controls. The combined test using either the Min(p) or Fisher’s approaches is a robust alternative to individual 

tests. 

Supplemental Tables 1a, 1b and 1c – Simulation results for null hypothesis (Table 1a), alternative hypothesis (Table 1b) and 

mixed hypothesis (Table 1c) situations involving generic combinations of two or more gene-based rare variant tests with 

different correlations and power and using different test combination strategies, across four different significance levels. 



Supplemental Table 2a and 2b – Type I error rates of individual and combined tests across a variety of simulation settings. Type 

I error rates are generally maintained. 

Supplemental Table 3- The power of each combined and individual test for all 197 simulation settings  

 

Supplemental Table 4 – The power of combined and individual tests at lower significance levels 

 

Supplemental Table 5- The p-values of four different gene-based rare variant tests on 25 genes from GAW17 

 

 


	General Approach for Combining Diverse Rare Variant Association Tests Provides Improved Robustness Across a Wider Range of Genetic Architectures
	Recommended Citation

	General Approach for Combining Diverse Rare Variant Association Tests Provides Improved Robustness Across a Wider Range of Genetic Architectures
	Abstract
	Keywords
	Disciplines
	Authors

	tmp.1482350058.pdf.JwNlt

