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Discrete Mathematics: Chapter 4, Basic Set Theory & Combinatorics

Abstract
The next two chapters deal with Set Theory and some related topics from Discrete Math-ematics. This chapter
develops the basic theory of sets and then explores its connection with combinatorics (adding and
multiplying; counting permutations and combinations), while Chapter 5 treats the basic notions of
numerosity or cardinality for finite and infinite sets.

Most mathematicians today accept Set Theory as an adequate theoretical foundation for all of mathematics,
even as the gold standard for foundations.* We will not delve very deeply into this aspect of Set Theory or
evaluate the validity of the claim, though we will make a few observations on it as we proceed. Toward the end
of our treatment, we will focus on how and why Set Theory has been axiomatized.

But even disregarding the foundational significance of Set Theory, its ideas and terminology have become
indispensable for a large number of branches of mathematics as well as other disciplines, including parts of
computer science. This alone makes it worth exploring in an introductory study of Discrete Mathematics.
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4.1 Basic Relations and Operations on Sets

The next two chapters deal with Set Theory and some related topics from Discrete Math-
ematics. This chapter develops the basic theory of sets and then explores its connection with
combinatorics (adding and multiplying; counting permutations and combinations), while Chap-
ter 5 treats the basic notions of numerosity or cardinality for finite and infinite sets.

Most mathematicians today accept Set Theory as an adequate theoretical foundation for
all of mathematics, even as the gold standard for foundations.* We will not delve very deeply
into this aspect of Set Theory or evaluate the validity of the claim, though we will make a few
observations on it as we proceed. Toward the end of our treatment, we will focus on how and
why Set Theory has been axiomatized.

But even disregarding the foundational significance of Set Theory, its ideas and terminology
have become indispensable for a large number of branches of mathematics as well as other
disciplines, including parts of computer science. This alone makes it worth exploring in an
introductory study of Discrete Mathematics.

Historical Background to Set Theory

Sets arise both from below, as it were, through aggregation (collecting individual things
together into a unified whole), and from above, via classification (forming a class via some
defining property). Sets occur in everyday life (a set of dishes; a collection MP3 music videos)
as well as in science and mathematics (the class of all mammals; the set of all prime numbers).
Notwithstanding the usefulness of sets, a theory about sets is a relatively recent phenomenon,
being about a century and a half old. Set Theory did not have its origin in ancient civilizations,
even if nomadic shepherds kept track of herds by making one-to-one correspondences between
their animals and collections of pebbles stored in a pouch. Classifying and collecting were
indeed important activities, but treating categories or collections as sets to be operated on, as
conceptual objects in their own right, played no real part in the development of mathematics
until the late nineteenth century. It was only then that a genuinely useful role was discovered
for sets.

The British mathematicians George Boole and Augustus De Morgan made some use of sets
mid-century in connection with their treatment of logic, but it was only with the work of the
German mathematicians Richard Dedekind and especially Georg Cantor in the last quarter
of the century that the value of sets was truly recognized. Dedekind used sets to develop
the real number foundations of calculus and also to characterize the natural number system.
Cantor was led to develop his theory of infinite sets by research into non-convergent point sets
for various Fourier series; using Set Theory he was able to settle some open questions in this
part of analysis. Over the years he developed Set Theory into a branch of mathematics, the
centerpiece being his treatment of transfinite (infinite) sets.

Set Theory was considered valuable for mathematics not only because of its analysis of
infinity. Some (though not all) mathematicians also touted it for its ability to lay a unified
theoretical foundation for all of mathematics. Developments along this line were encouraged by
certain schools of thought in the early twentieth century (by logicism, led by Bertrand Russell;
and by formalism, led by David Hilbert) and were programmatically developed a bit later by
a group of prominent mathematicians writing under the French pseudonym Nicolas Bourbaki.

New Math proponents jumped on the bandwagon in the 1960s. They believed school
mathematics could be learned more quickly and economically (crucial concerns to the U.S.
at that time in its space race with the U.S.S.R.) if children were exposed to the conceptual

* However, there are also advocates for another more algebraic foundation, and some would be content with simply having
different foundations for different parts of mathematics.
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structure of mathematics. Drawing from developments earlier in the century, they promoted Set
Theory as the theoretical basis and unifying apparatus for mathematics. In the following years,
though, a strong reaction set in. Many educators resisted teaching something as abstract as Set
Theory to young children. Consequently, sets now play only a minimal role in most elementary
mathematics programs; where they do come in, they are now taught in moderation and far
more concretely than earlier.

Regardless of the validity of using Set Theory as the ultimate foundation for mathematics
or as a unifying tool for all of mathematics, Set Theory has played a very important role
in contemporary mathematics, including Discrete Mathematics. We will take it up here as
background for a number of topics treated later in the book.

The Idea, Notation, and Representation of Sets

A set is any definite collection of things of any kind whatsoever. This isn’t really a defini-
tion; it merely uses the synonym collection to say what a set is. In fact, no genuine definition
can be given. The term set refers to something so basic it needs to be taken as primitive,
as an undefined term. Everyone is familiar with its concrete meaning from everyday experi-
ence; Set Theory sharpens and extends this intuition. Other synonyms for ‘set’ are ‘family’,
‘class’, ‘group’, ‘herd’, and so on. Certain terms will be more appropriate than others in given
situations – you wouldn’t call a sports team a gaggle of players – but the basic idea is always
the same: anytime a multiplicity of distinct and definite objects are gathered together into
a single conceptual unit, you have a set. How the elements or members of a set are related
to one another is irrelevant from a simple set-theoretical point of view. Whatever algebraic
and relational structures a set might have are irrelevant on this level; basic Set Theory is only
concerned with which things belong to what sets.

In formulating assertions about sets, it is customary to use capital letters to indicate sets
and lower case letters to stand for individual members of such sets, though there are times
when this practice must be abandoned. The symbol ∈ is used to indicate set membership.
Thus, if P denotes the set of all prime numbers, 3 ∈ P says that 3 is a prime number; x ∈ Q

says that x belongs to the set of rational numbers Q.

A set may be specified in two main ways: by listing its elements (giving a membership
roster) or by stipulating a membership criterion (a common property shared by all and only
those elements in the set). This leads to two different ways to denote specific sets. If the sets are
small enough, their members can be listed between braces, separating the different elements
with commas. The set of primes less than ten can be denoted by {2, 3, 5, 7}. Sometimes
dots are used to list the elements of a set, provided the pattern generated is clear from the
elements that are present. Thus, the first one hundred counting numbers can be written as
{1, 2, 3, · · · , 99, 100} and the entire set of natural numbers as {0, 1, 2, 3, · · ·}.

Denoting a finite set by Set Roster Notation can be taken as a shorthand for a disjunction
explicitly identifying all of its members. Thus S = {a1, a2, . . . , an} means that x ∈ S iff
x = a1 ∨ x = a2 ∨ · · · ∨ x = an.

Sets that are too large to list conveniently or that cannot be listed at all may be indicated
by means of Set Descriptor Notation . Braces are again used, but now a variable representing an
arbitrary element of the set is given together with a description or formula that all set members
satisfy. For example, the notation {x : x is prime} identifies the set of all prime numbers. The
notation {m/n : m, n integers, n 6= 0} indicates the set of all rational numbers. The abstract
assertion S = {x : P (x)} can be taken as equivalent to the proposition ∀x(x ∈ S ↔ P (x)).*

Often Restricted Set Descriptor Notation is used to present a set. S = {x ∈ U : P (x)}
indicates that S consists of all those elements inside U satisfying statement P (x). Here U

* More formally, we would state this as a definition of our notation: S = {x : P (x)} ↔ ∀x(x ∈ S ↔ P (x)).
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functions as a restricting universe of discourse.* Thus S = {x ∈ U : P (x)} is an abbreviated
equivalent for the membership claim ∀x(x ∈ S ↔ x ∈ U ∧ P (x)).

To assist us as we state and prove theorems of Set Theory, we will use diagrams to represent
sets pictorially. These diagrams play the same role in Set Theory that geometric diagrams do
in geometry: they help us follow what is being asserted, but they are not a substitute for
deductive argumentation. Such diagrams are called Venn Diagrams after the late nineteenth
century English logician John Venn, who introduced them into logic, though similar devices
were used earlier by other mathematicians.**

U U

S T S T

R

Venn Diagrams

Venn diagrams typically contain two or three circles located within a single rectangle. The
outer rectangle represents the universe of discourse being considered, and the circles inside
stand for particular sets. When arbitrary sets are intended, the circles are drawn as overlap-
ping to permit all possible relations among the sets (see above). Overlapping regions do not
automatically indicate shared membership; the existence of intersecting regions only permits
that as a possibility. Particular sets and the existence of elements within a given region may
be indicated either by means of shading or listing members.

Equal Sets and Subsets

Since sets are completely determined by their members, it is intuitively obvious that two
sets should be considered equal iff they contain exactly the same elements. This gives us the
following axiom or definition.†

Axiom/Definition 4.1 - 1 : Equality for Sets
S = T ↔ ∀x(x ∈ S ↔ x ∈ T )

Equality between two sets S and T is thus demonstrated, according to this definition, by
taking an arbitrary element x (to satisfy UG) and proving the biconditional x ∈ S ↔ x ∈ T .
This in turn is usually done (via BI ) by two subproofs: supposing x ∈ S, you prove x ∈ T ;

* In Section 5.3 we will see that there may be good reasons for restricting sets to those that can be formed inside other
already existing sets.

** Tracing this usage back, Venn attributes them to Euler. Euler probably got them from his teacher, Jean Bernoulli, who
in turn was likely indebted to his collaborator Leibniz. Leibniz used them in his work to exhibit relations among classes,
just as we do. Earlier versions prior to Venn were somewhat more limited than what we currently use.

† There is more here than meets the eye, since we already have a fixed, logical interpretation for “equals.” The forward
part of this definition follows from the inference rules for identity and so can actually be proved; the backwards part, on
the other hand, needs to be asserted as an axiom. Since taken together it specifies how we will be using equality in the
context of Set Theory, we will treat it here as a definition of equality for sets.
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then, supposing x ∈ T , you prove x ∈ S. At times, however, you may be able to chain a
number of biconditionals together and so establish both directions simultaneously.

Arguing for the two component conditionals x ∈ S → x ∈ T and x ∈ T → x ∈ S in the
subproofs for BI amounts to showing in each case that the first set mentioned is contained in
the second one as a subset. This leads us to the next definition and to our first proposition.

DEFINITION 4.1 - 2: Subset and Superset Inclusions
(a) Subset: S ⊆ T ↔ ∀x(x ∈ S → x ∈ T )
(b) Superset: T ⊇ S ↔ S ⊆ T

U

T

S

S ⊆ T

In order to show that a set S is a subset of a set T , therefore, you must show for each x that
if it is in S, then it is in T ; i.e., letting x represent an arbitrary element of S, you must prove
that x is also an element of T . We apply this proof procedure as well as the one for equality in
the proof of the first proposition. Proofs for the first few propositions will be talked through
and worked in more detail than typical. Try to supply the reasons at the question prompts.
Once you see what needs doing in such proofs, you can begin to abbreviate them.

PROPOSITION 4.1 - 1: Equality and Subset Inclusion
S = T ↔ S ⊆ T ∧ T ⊆ S

Proof :

Our proposition is a biconditional sentence, so we will use BI .
• First suppose S = T .

Then ∀x(x ∈ S ↔ x ∈ T ). (why?)
Suppose that x is any element of S.
Then x must be an element of T . (why?)

Hence S ⊆ T . (why?)
Similarly T ⊆ S.
And so S ⊆ T ∧ T ⊆ S. (why?)

• Conversely, suppose S ⊆ T ∧ T ⊆ S.
Then ∀x(x ∈ S → x ∈ T ) and ∀x(x ∈ T → x ∈ S). (why?)
But then given any element x, (x ∈ S → x ∈ T ) ∧ (x ∈ T → x ∈ S). (why?)
This means ∀x(x ∈ S ↔ x ∈ T ). (why?)
And so S = T . (why?)

This proves the proposition. (why?)

The main way in which sets are shown to be equal is via the definition, using arbitrary
elements of the sets to establish the equality. However, sometimes it will be possible to remain
up on the set level, without descending to the level of the sets’ elements. Then Proposition 4.1-1
may come in handy. Occasionally, it will also work to show the equality of two sets by taking
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the set on one side of the equation and showing it via some transformation to be the same as
the set on the other side.

The subset relationship is sometimes confused with set membership. This is due to fuzzy
thinking. Elements are not subsets. You should take care to keep these two concepts distinct.
The number 2 is an element of the set P of prime numbers; it is not a subset of P . On the
other hand, the set P of prime numbers is a subset of the natural number system N; it is not an
element of N, because it is not a natural number. The potential for confusion on this score is
increased when we come to consider sets whose elements are themselves sets (see Section 4.2),
but it can be avoided if you stay on your guard.

According to Proposition 1, whenever S ⊆ T and T ⊆ S, then S = T . In technical terms
this is summarized by saying that ⊆ is an antisymmetric relation (≤ is another such relation).
And, like ≤ for numbers, the ⊆ relation is not symmetric; that is, it is generally not true
that whenever S ⊆ T , then T ⊆ S. The subset relation does have two other basic properties,
however. The first one is completely trivial; the second is less so but should be fairly obvious.

PROPOSITION 4.1 - 2: Reflexive Law for Inclusion
S ⊆ S

Proof :

If x ∈ S, then x ∈ S.

PROPOSITION 4.1 - 3: Transitive Law for Inclusion
R ⊆ S ∧ S ⊆ T → R ⊆ T

Proof :

This sentence is a conditional sentence, so we’ll
use CP to prove it.
Suppose R ⊆ S ∧ S ⊆ T .
Using the Method of Backward Proof Analysis
[doing this is crucial–otherwise you may get lost
in the “givens” and not get off on the right foot],
note that we want to show that R ⊆ T . This is
done by proving that if x ∈ R, then x ∈ T , too.
Using CP as our proof strategy for this, we now
suppose x ∈ R.
Since R ⊆ S, x ∈ S. (why?)
But S ⊆ T , too; so x ∈ T . (why?)
This is what we needed to show, so R ⊆ T .

U

T

S

R

R ⊆ S ⊆ T

Our definition of subset inclusion permits the possibility that the two sets are equal. There
is also a more restricted notion of inclusion. Proper inclusion occurs when the subset is strictly
smaller than the superset. This relation is also transitive, but it is not reflexive or symmetric
(see Exercises 10 – 11).

DEFINITION 4.1 - 3: Proper Subset Inclusion
S ⊂ T ↔ S ⊆ T ∧ S 6= T

Among all possible sets, one set is contained in every set. This is the empty set , denoted
by ∅. The set ∅ plays somewhat the same role in Set Theory that the number 0 plays in
arithmetic (see Exercises 13 – 16). And, like the number 0, it sometimes gives conceptual
trouble when it is first encountered (how can something be a set if it doesn’t contain any
elements?). It might help you to think of sets as collectors; an empty set is a collector with no
objects inside it. We can define it by using a property that cannot be satisfied (a contradictory
property).
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DEFINITION 4.1 - 4: Empty Set
∅ = {x : x 6= x}

Given the meaning of Set Descriptor Notation , it immediately follows from this definition
that ∀x(x /∈ ∅): that is, nothing is in ∅.

You may understand just why each statement was made in the proofs of the first few
propositions, since the distance between successive steps was quite small. But don’t expect
this always to be the case. You should get in the habit of reading a proof with a pencil and
paper. The main steps may be there, but you will often have to fill in some details. Knowing
what proof strategies are available for the sentences involved should give you insight into what
might be going on in a proof and thus make you better able to follow it, even when it is sketchy.
The proof of Proposition 4 will give you some practice at this (see Exercise 21).

PROPOSITION 4.1 - 4: Empty Set Inclusion
∅ ⊆ S

Proof :

Suppose that x /∈ S.
But x /∈ ∅, too.
Thus ∅ ⊆ S.

Intersection and Union

The two most basic binary operations on sets are intersection and union. We will state
definitions for these using Set Descriptor Notation .

DEFINITION 4.1 - 5: Intersection
S ∩ T = {x : x ∈ S ∧ x ∈ T}

U

S T

S ∩ T

We are assuming that intersection is a genuine binary operation on sets: given any two sets
S and T , the intersection S ∩ T is a well-defined set. This is so even when the two sets have
no overlap or are disjoint . In this case the intersection is the empty set.

DEFINITION 4.1 - 6: Disjoint Sets
S and T are disjoint sets iff S ∩ T = ∅.

U

S T

S ∩ T = ∅
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DEFINITION 4.1 - 7: Union
S ∪ T = {x : x ∈ S ∨ x ∈ T}

U

S T

S ∪ T

It is clear from the definitions just given that intersection and union parallel the logical
operations of conjunction and disjunction. This correspondence reveals itself more fully in
various laws governing these operations, which are the counterparts of various Replacement
Rules for SL. These propositions are most easily proved by employing this correspondence; if
the associated Replacement Rules from logic are not used, the proofs can be tedious and rather
lengthy. You should also draw Venn diagrams for the sets being equated in each proposition.
This does not constitute a genuine proof, but it will help convince you that the propositions
are true.

PROPOSITION 4.1 - 5: Idempotence Laws for Intersection and Union
a) S ∩ S = S
b) S ∪ S = S

Proof :

a) Let x be an arbitrary element.
By Definition 5, x ∈ S ∩ S ↔ x ∈ S ∧ x ∈ S.
But by Idem, x ∈ S ∧ x ∈ S = x ∈ S.
Substituting, x ∈ S ∩ S ↔ x ∈ S.
But this means that S ∩ S = S by Definition 1.

b) Note that part b differs from part a only in the operation involved. Replacing ∩ by ∪
and ∧ by ∨ everywhere in part a’s argument, a proof for b immediately results.

The way in which the second half of the last proposition was proved suggests that a Duality
Principle may be at work in Set Theory: replace ∩ with ∪ and conversely and you have a
new proposition and a new proof technique. The following propositions seem to offer further
confirmation of this possibility, but does such a principle really hold? We’ll return to answer
this question later (see also Exercise 4.2-38).

PROPOSITION 4.1 - 6: Commutative Laws for Intersection and Union
a) S ∩ T = T ∩ S
b) S ∪ T = T ∪ S

Proof :

a) x ∈ S ∩ T ↔ x ∈ S ∧ x ∈ T [Defn 5]
↔ x ∈ T ∧ x ∈ S [Comm (∧)]
↔ x ∈ T ∩ S. [Defn 5]

b) See Exercise 18a.
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PROPOSITION 4.1 - 7: Associative Laws for Intersection and Union
a) R ∩ (S ∩ T ) = (R ∩ S) ∩ T
b) R ∪ (S ∪ T ) = (R ∪ S) ∪ T

Proof :

See Exercises 17a and 18b.

PROPOSITION 4.1 - 8: Distributive Laws: Intersection/Union over Union/Intersection
a) R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T )
b) R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T )

Proof :

See Exercise 19.

PROPOSITION 4.1 - 9: Absorption Laws and Subset Ordering
a) S ∩ T ⊆ S S ∩ T ⊆ T
b) R ⊆ S and R ⊆ T iff R ⊆ S ∩ T .
c) S ⊆ S ∪ T T ⊆ S ∪ T
d) R ⊆ T and S ⊆ T iff R ∪ S ⊆ T .

Proof :

We will sketch proofs for the first two parts and leave the others for the exercises (see
Exercise 18cd).
a) This is essentially the set theoretic counterpart of the SL inference rule Simp:

x ∈ S ∧ x ∈ T = x ∈ S, x ∈ S ∧ x ∈ T = x ∈ T .
b) R is contained in both S and T iff all its elements are in both S and T . This occurs iff

its elements are contained in S ∩ T ; i.e, iff R ⊆ S ∩ T .

The first two parts of the last proposition can be summarized by saying that the intersection
S ∩ T is the largest set contained in both S and T ; similarly, parts c and d can be summarized
by saying that the union S ∪ T is the smallest set containing both S and T . These results are
both important for the theory of ordering sets according to the subset relation. We will explore
these and related matters in a more algebraic setting in Chapter 7.

Set Difference and Set Complement

Given two sets S and T , we can not only form their union and intersection; we can also
take their set difference. And given a set U , we can define set complement relative to U in
terms of set difference. These notions are defined as follows, using Set Descriptor Notation .

DEFINITION 4.1 - 8: Set Difference, Set Complement
a) S − T = {x : x ∈ S ∧ x /∈ T}.
b) Let U be any set. Then the complement of S inside U is S = U − S.

U U

S T

S − T

S

S

S
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The notion of set complement does not require S ⊆ U , but this is the context in which it is
usually applied. U thus forms a sort of universal superset for sets whose complements are being
formed. The following proposition, however, holds in all cases, regardless of how S, T , and U
are related. Note once again how the counterpart of a Replacement Rule plays the crucial role.
Other results involving set difference and set complement are found in the exercises.

S T

S ∩ T

S T

S ∪ T

PROPOSITION 4.1 - 10: De Morgan's Laws for Set Complement
Let S and T be any two sets, with their complements being taken with respect to a common
set U . Then

a) S ∩ T = S ∪ T ;

b) S ∪ T = S ∩ T .

Proof :

a) The above diagrams make it seem plausible that the complement of the intersection is
the union of the complements.
The argument for this claim goes as follows:
x ∈ S ∩ T ↔ x ∈ U ∧ x /∈ (S ∩ T ) [Defn of set complement]

↔ x ∈ U ∧ ¬(x ∈ S ∧ x ∈ T ) [Defn of intersection]
↔ x ∈ U ∧ (x /∈ S ∨ x /∈ T ) [DeM for negated ∧]
↔ (x ∈ U ∧ x /∈ S) ∨ (x ∈ U ∧ x /∈ T ) [Distributive Law: ∧ over ∨]
↔ x ∈ U − S ∨ x ∈ U − T [Defn of set difference]
↔ x ∈ (U − S) ∪ (U − T ) [Defn of union]
↔ x ∈ S ∪ T . [Defn of set complement]

Therefore S ∩ T = S ∪ T . [Defn of set equality]
b) See Exercise 20a.

EXERCISE SET 4.1

To work the following problems, you do not need to use a two-column format nor only logical rules of inference

as reasons. Use the deduction systems of PL and SL as guides to help you determine proof strategy. Illustrate

your results using Venn diagrams wherever appropriate.

*1. Venn Diagrams

*a. A certain company presented a set of data having four possi-
ble categories A, B, C, and D by means of the Venn diagram
at the right. Explain why this diagram is deficient.

EC b. Modify the diagram in some way to show all possible regions.

B

A C

D
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Problems 2 - 5: Illustrating Basic Operations

Let U = {x ∈ N : x ≤ 30}, E = {x ∈ U : x is even}, O = {x ∈ U : x is odd}, and P = {x ∈ U : x is prime}.
Determine the following sets.

*2. Intersections

a. O ∩ E *b. O ∩ P c. E ∩ P

*3. Unions

a. O ∪ E b. O ∪ P *c. E ∪ P

*4. Complements Relative to U

*a. E b. O c. P *d. O ∪ P

*5. Set Differences

a. E − O *b. E − P c. P − E d. O − P

Problems 6 - 8: True or False

Are the following statements true or false? Explain your answer.

*6. Two sets are equal iff each one has elements of the other.

*7. {1, 2, 3} = {3, 2, 1}

8. The complement of the intersection of two sets is the intersection of the complements.

Problems 9 - 12: Proper Subset Inclusion

Prove the following properties.

9. Proper Containment: S ⊂ T ↔ S ⊆ T ∧ ∃x(x ∈ T ∧ x /∈ S)

10. Non-Reflexivity: S 6⊂ S

11. Non-Symmetry: S ⊂ T → T 6⊂ S

12. Transitivity: S ⊂ T ∧ T ⊂ R → S ⊂ R

Problems 13 - 16: Properties of the Empty Set

Prove the following.

13. S ⊆ ∅ → S = ∅

14. ∅ ∩ S = ∅ = S ∩ ∅

15. ∅ ∪ S = S = S ∪ ∅

16. S − ∅ = S; ∅ − S = ∅

Problems 17 - 21: Proofs

Prove the following propositions concerning set theoretical operations. First construct a Venn diagram to

illustrate the proposition, then give an argument for it. Where one exists, the associated Replacement Rule

of SL should be of real help.

17. Intersection

a. Proposition 4.1-7a

18. Unions

a. Proposition 4.1-6b

b. Proposition 4.1-7b

c. Proposition 4.1-9c

d. Proposition 4.1-9d

*19. Intersection and Union

*a. Proposition 4.1-8a

b. Proposition 4.1-8b

*20. Complements

*a. Proposition 4.1-10b
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21. Analyze and rewrite the proof of Proposition 4.1-4, filling in any steps you think are still required to make
the proof more understandable. Identify the various proof strategies used in asserting each statement in
the proof.

Problems 22 - 54: Theorems or Not?

Determine whether the following claims are theorems of Set Theory or not. Use Venn diagrams to help you

decide. If they are true, prove them; if they are not, provide a specific counterexample. If you see an obvious
way to fix a false result, restate it and then prove it. Assume that complements are taken relative to some

universal set U containing R, S, and T .

*22. R ∪ S = R ∪ T → S = T

23. R ∩ S = R ∩ T → S = T

*24. R ⊆ S → R ∩ T ⊆ S ∩ T

25. R ⊆ S → R ∪ T ⊆ S ∪ T

26. S ⊆ T ↔ S ∪ T = T

*27. S ⊆ T ↔ S ∩ T = S

*28. R ⊆ T ∨ S ⊆ T ↔ R ∩ S ⊆ T

29. R ⊆ S ∨ R ⊆ T ↔ R ⊆ S ∪ T

30. S ∩ T = S ↔ S ∪ T = T

31. S ∩ T = ∅ → S = ∅ ∨ T = ∅

32. S ∪ T = ∅ ↔ S = ∅ ∧ T = ∅

33. S − T ⊆ S

34. S − T = S ∩ T

35. S − T = S − (S ∩ T )

*36. S ∪ T = (S − T ) ∪ (T − S)

37. (S − T ) ∩ T = ∅

38. S − T = T − S

39. S ∩ T = ∅ ↔ S − T = ∅

40. T − S = T − R → S = R

41. S − R = T − R → S = T

42. S ⊆ T → S − R ⊆ T − R

43. R ⊆ S → T − S ⊆ T − R

EC 44. R ∪ S = R ∪ T ↔ S − R = T − R

45. T − (S − R) = (T − S) ∪ (T ∩ R)

46. (T − S) − R = (T − R) − S

47. (T − S) − R = (T − S) ∩ (T − R)

48. (T − S) − R = (T − S) − (R − S)

49. S − (S − T ) = S ∩ T

50. S − (S − T ) = T ↔ T ⊆ S

51. T − (S ∩ R) = (T − S) ∩ (T − R)

52. T − (S ∪ R) = (T − S) ∩ (T − R)

*53. (S) = S

54. (T ∪ S) − R = (T − R) ∪ (S − R)

4.1 -11



Problems 55 - 69: Symmetric Difference

The symmetric difference of two sets S and T is defined by S t T = (S −T )∪ (T −S). With this definition,

prove the following results.

55. S t S = ∅

56. S t ∅ = S

57. S t T = T t S

58. (S t T ) t R = S t (T t R)

59. S t T ⊆ S ∪ T

60. (S t T ) ∩ (S ∩ T ) = ∅

61. S ⊆ S t T ↔ T ⊆ S t T ↔ S ∩ T = ∅ ↔ S ∪ T = S t T

62. S t T = (S ∪ T ) − (S ∩ T )

63. S t T = (S ∩ T ) ∪ (S ∪ T )

64. S t T = (S ∪ T ) t (S ∩ T )

65. S ∪ T = (S t T ) t (S ∩ T )

66. S ∩ T = (S t T ) t (S ∪ T )

67. S ∩ (T tR) = (S ∩ T ) t (S ∩ R)

68. R t S = R t T → S = T

69. S = T ↔ S t T = ∅
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HINTS TO STARRED EXERCISES 4.1

1. a. How many distinct regions should there be for four sets? How many are there here? To see what’s
missing, consider, for example, the region covered by A ∩ C.

2. b. O ∩ P is the set of all numbers that are elements of both O and P .

3. c. E ∪ P is the set of all numbers that are elements of either E or P .

4. a. E is the set of all elements in U but not in E.

d. Do this directly, or make use of De Morgan’s Laws (Proposition 4.1-10).

5. b. E − P is the set of all numbers that are elements of E but not P .

6. [No hint.]

7. [No hint.]

19. a. Make use of an appropriate related Replacement Rule of SL. See the proofs of Propositions 6 and 10
for how to formulate your argument.

20. a. Prove that x ∈ S ∪ T ↔ x ∈ S ∩ T by using what you know about sentential connectives and the
definitions of complement, union, and intersection.

22. Can R just be subtracted out of a union to leave the remaining sets? Work this problem (and the
following ones) by doing two opposite things: look for an argument to prove the result, and look for a
simple concrete counterexample to disprove the result.

24. A strategy to try here uses the definition of being a subset.

27. How are biconditional statements proved? Keep your logic fresh.

28. Begin each half of the proof by focusing on what you want to prove. Use Cases for the forward direction;
the backwards direction requires more thought.

37. Draw a picture here to start with. If it seems like the result is false, make the sets concrete and you’ll
have a counterexample.

44. Draw a Venn diagram here before starting on a proof.

53. What Replacement Rule from SL does this remind you of? Use that rule in your argument.



4.2 Collections of Sets and the Power Set

Section 4.1 initiated our treatment of elementary Set Theory. There we discussed var-
ious relations between sets (set equality, subsets) as well as the role of the empty set, and
we introduced the most basic binary operations on sets (intersection, union, set difference,
set complement). In addition to defining these notions, we stated and proved a number of
fundamental properties for them, using what we knew about Sentential Logic.

We now continue our exploration on the next level, looking at Set Theory topics that involve
collections of sets. The sets we form here have sets as their elements; this accounts for the
abstractness some experience on this level. We will also take another look at set operations
in this broader context. We conclude our investigation by looking at a particular collection of
sets, the power set of a set.

Collecting Sets into Sets

So far we have focused more or less on two levels of set theory: sets and their elements.
You may think of these as very different things, objects and collections; but nothing prohibits
us from taking the sets themselves as elements for a collection on a still higher level. Sets are
legitimate entities and so can be collected to form sets of sets.

This occurs in everyday life as well as mathematics. Baseball players are members of teams,
which are members of divisions and leagues. Players are not members of leagues, and teams
are not subsets of leagues. Leagues provide a third level of set-theoretic reality in the world
of major league baseball. Without the ability to form sets of sets, there could be no division
run-offs or world series.

But keeping our nose out of sports and down on the grindstone of mathematics, we can
see other needs for such sets. To take a simple example, geometric figures are often viewed as
infinite sets of points in a certain configuration. A pair of isosceles triangles, therefore, is a
collection of two point sets. If they were merely a joined conglomeration of points instead of a
set of sets of points, we couldn’t say that there were two triangles there; it would be an infinite
collection of points instead.

We can also take an example from number theory, where mathematicians are often inter-
ested in what the remainder is when one integer is divided by another.

z EXAMPLE 4.2 - 1

Discuss the collection of sets that results when natural numbers are divided by the num-
ber 4.

Solution
Our universe of discourse here is N. Any natural number can be divided by 4, leaving a
remainder or residue of 0, 1, 2, or 3.
We’re thus led to form four residue classes: R0, R1, R2, and R3. For example, 7 ∈ R3 and
16 ∈ R0 because these numbers leave remainders of 3 and 0 respectively.
These sets can be collected into a collection of four residue classes: {R0, R1, R2, R3}. It
turns out that these residue classes can treated in much the same way as numbers, yielding
what is called modular arithmetic. We won’t go into this development here (see Section 6.3),
but you should be aware of the fact that such collections have very important uses.

Sets of sets occur often in abstract settings. In more advanced mathematics courses, many
algebraic structures are constructed as so-called quotient structures, which are sets of sets of a
special type. Courses in analysis and topology consider other sorts of collections as a foundation
for defining some of their central notions. So working with collections of sets is an important
skill to learn if you are going on in mathematics. Also, without a way to gather a number of
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sets into a set, we wouldn’t be able to collect the subsets of a given set into a set, something
we will discuss shortly.

Given any number of sets, then, it seems we ought to be able to collect them together into
a set, just as is done with individual objects. We will assume such families of sets exist as sets
in good standing. We can denote such sets, as before, either by listing their members or by
formulating a property they must all satisfy.

z EXAMPLE 4.2 - 2

Let S and T be two distinct sets. Discuss:
a) the set whose sole member is a set S,
b) the set whose elements are the sets S and T , and
c) the set whose elements are the sets S and S.

Solution

a) The singleton {S} consists of a single element. Clearly S ∈ {S}, but S 6= {S};* nor is
either set a subset of the other one. For if S were, for example, the set of all perfect
squares, S would contain infinitely many numbers, while {S} would contain only a
single entity, the collection of these numbers.

b) The doubleton {S, T} is formed by pairing up the two sets S and T as elements of
another set. In general, elements of S and T will not be elements of the doubleton.
It thus differs from both S and T ; nor can it be obtained from them by taking an
intersection, union, or set-difference. It lies on a higher set-theoretic level than these
sets. This is certainly the case, for example, when S is the set of even numbers and T
is the set of odd numbers (see Exercise 3).
The doubleton {T, S} is identical with the doubleton {S, T} since they have exactly the
same elements. The order in which a set’s elements are listed is irrelevant to simple set
equality.

c) The doubleton {S, S} is identical with the singleton {S}; both contain S as their sole
element. Multiplicity is irrelevant to set identity. An object either is or is not a member
of a set; it cannot be doubly present, even if it is listed twice.**

Total Intersections and Unions

The ordinary operations of intersection and union are binary set-theoretic operators: they
operate on pairs of sets. By repeating the process, finite intersections and unions can be
performed (see Exercises 13-14). However, given any collection of sets, whether finite or not,
we would like to be able to perform a total intersection or total union on the sets in this
collection, all at once. Such intersections and unions are defined as follows.

DEFINITION 4.2 - 1: Total Intersections of Collections

If C is a non-empty collection of sets, then
⋂

S∈C

S = {x : (∀S ∈ C)(x ∈ S)}.

DEFINITION 4.2 - 2: Total Unions of Collections

If C is a non-empty collection of sets, then
⋃

S∈C

S = {x : (∃S ∈ C)(x ∈ S)}.

* This assumes S is not a set having itself as its sole element. Such anomalous sets are ruled out in axiomatic presentations
of Set Theory. We will touch on this briefly in Section 5.3.

** There are mathematical entities, called multisets or bags , however, in which multiplicity is taken into account.
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In words, the intersection of a family of sets consists of all the elements that belong to every
set in the collection. The union of a collection of sets consists of all those elements that belong
to one or more sets in the collection.

z EXAMPLE 4.2 - 3

Determine the total intersection and total union for the collection C of concentric closed
discs centered about the origin, Dr = {(x, y) : x2 + y2 ≤ r}, where 1/2 < r < 1.

Solution
Since each disc in the collection is centered
about the origin, the intersection of any
two of them will be the smaller of the two
discs. The total intersection would thus
be the smallest disc of all, if there were
one. However, since the disc radius r is
always greater than 1/2 and there is no
smallest number greater than 1/2, there
is no smallest disc in this collection.
The entire disc of radius 1/2 is certainly
contained in all of the discs, but given
any disc slightly bigger than this, we can
always find a smaller disc in the collec-
tion by choosing our radius r a bit closer
to 1/2. So the total intersection of all
discs cannot extend beyond D1/2, the disc
whose radius is 1/2.

Therefore
⋂

D∈C

D = D1/2.

Similarly, given any two discs from the collection, their union is the larger of the two discs.
The total union of all the discs would thus be the largest disc, if there were one. There
isn’t, however, since there is no largest real number less than 1.
The discs can be made arbitrarily close to the unit disc D1 by choosing r very close to
1, but since r < 1 for every disc in the collection, none of the points on the unit circle
x2 + y2 = 1 belongs to any of the collection’s discs. Nevertheless, every point strictly inside
this unit circle does belong to some disc: choose r to be the distance of that point to the
origin to get an appropriate containing closed disc. We’ll denote the open interior of this
unit circle (the disc minus its boundary) by O1.

Therefore
⋃

D∈C

D = O1.

r = 1

0 < r < 1 r = 1/2

Properties of Total Intersections and Unions

A number of properties that held for simple intersection and union also hold for arbitrary
intersections and unions. We will consider the generalized Distributive Laws and De Morgan’s
Laws. Most of the proofs, along with other results, will be left as exercises.

PROPOSITION 4.2 - 1: Distributivity

a) R ∩

(

⋃

S∈C

S

)

=
⋃

S∈C

(R ∩ S);

b) R ∪

(

⋂

S∈C

S

)

=
⋂

S∈C

(R ∪ S).
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Proof :

a) We’ll prove the first part and leave the second part for the exercises (see Exercise 17).

x ∈ R ∩

(

⋃

S∈C

S

)

↔ x ∈ R ∧ (∃S ∈ C)(x ∈ S)

↔ (∃S ∈ C)(x ∈ R ∧ x ∈ S)

↔ (∃S ∈ C)(x ∈ R ∩ S)

↔ x ∈
⋃

S∈C

(R ∩ S).

PROPOSITION 4.2 - 2: De Morgan's Laws
Let U be any set and let S = U − S be the complement of S relative to U .

a)
⋂

S∈C

S =
⋃

S∈C

S ;

b)
⋃

S∈C

S =
⋂

S∈C

S.

Proof :

See Exercise 18ab.

PROPOSITION 4.2 - 3: Intersections, Unions, and Subsets

a)
⋂

S∈C

S ⊆ T for all T ∈ C ;

b) R ⊆ S for all S ∈ C iff R ⊆
⋂

S∈C

S ;

c) T ⊆
⋃

S∈C

S for all T ∈ C ;

d) S ⊆ R for all S ∈ C iff
⋃

S∈C

S ⊆ R.

Proof :

b) We’ll prove part b and leave the remaining parts as exercises (see Exercise 19abc).
First suppose R is a subset of every set S in the collection C,

and let x be any element of R.
Then, since R ⊆ S, x ∈ S for every set S ∈ C.

This implies that x ∈
⋂

S∈C

S.

Therefore, R ⊆
⋂

S∈C

S.

Conversely, suppose R ⊆
⋂

S∈C

S.

Then, for any x in R, x lies in every S belonging to C.
Thus R ⊆ S for every S in C.

To summarize this last proposition in words: parts a and b say that the intersection of
a collection of sets is the largest set contained in each member of the collection; and parts c
and d say that the union of a collection of sets is the smallest set containing each member of
the collection. Thus, the intersection is the least upper bound of a collection of sets, ordered
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under the subset relation. The union is similarly the greatest lower bound of a collection of
sets. These ideas will be explored later in connection with Boolean Algebra (see Section 7.2).

Partitions

Collections of sets often arise when a given set is partitioned into some number of subsets. A
partition is a collection of pairwise disjoint subsets that all together exhaust the given superset.
We will define this more formally after first defining what it means to be pairwise disjoint. This
is a concept that plays an important role in some advanced mathematics courses, particularly
analysis. Partitions are one of the reasons mathematicians are interested in collections of sets.

DEFINITION 4.2 - 3: Pairwise Disjoint Collections of Sets
A collection of sets C is pairwise disjoint iff S ∩T = ∅ for any two distinct sets S and T in
the collection.

z EXAMPLE 4.2 - 4

Determine whether the collection of all open intervals of real numbers of the form (n, n+1)
is pairwise disjoint:
a) when n ∈ Z;
b) when n ∈ Q.

Solution

a) If only integer values of n are allowed, the collection of open intervals is pairwise disjoint.
The nearest neighbors in the collection are then of the form (n − 1, n) and (n, n + 1),
and these sets have no points in common.

b) However, if n is permitted to take on any rational number values, the collection of
intervals is certainly not pairwise disjoint: for example, (0, 1) ∩ (.5, 1.5) = (.5, 1).

Pairwise disjoint collections are strongly disjoint: this property asserts more than that
the intersection of the collection as a whole is empty (see Exercises 20 – 22). Being pairwise
disjoint is sometimes required in order for certain properties to hold. For instance, given a finite
collection of finite sets, the total number of elements in the union is the sum of the individual
numbers iff the collection is pairwise disjoint (see Section 4.5).

DEFINITION 4.2 - 4: Partition of a Set
A partition of a set S is a collection C of subsets of S which is pairwise disjoint and whose

total union
⋃

R∈C

R is S.

z EXAMPLE 4.2 - 5

Does the collection of all open intervals of real numbers of the form (n, n + 1) form a
partition of R if n ∈ Z? if n ∈ Q? Find a partition of R.

Solution
Neither given collection forms a partition of R.
The first one (when n ∈ Z) doesn’t because while it is pairwise disjoint, its union misses all
integers and so doesn’t yield R.
The second collection also fails to be a partition, for while its union is all of R, it is not
pairwise disjoint (see Example 3).
Taking the collection of half-open/half-closed intervals (n, n+1] for n ∈ Z forms a partition
of R: the collection is pairwise disjoint, and its union is all of R.
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Sets of Subsets: The Power Set

Given any set S, consider its subsets. Regardless of what S is, it has at least the extreme
possibilities ∅ (nothing) and S (everything) as subsets. It will generally have many other
subsets as well. The set consisting of all the subsets of S is called the power set of S and is
denoted by P(S).

DEFINITION 4.2 - 5: Power Set
P(S) = {R : R ⊆ S}.

The power set operator P is a strong unary operator. Given any set S, it collects all of its
subsets into a set whose elements are those subsets. The power set operator obviously boosts
us up onto a higher level of sets, generating large new sets of sets (see Exercise 31).

z EXAMPLE 4.2 - 6

Determine the power set for the set S = {1, 2, 3} .

Solution
The following eight subsets are the elements of P(S):

∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

The power set operator is monotone increasing, in the following precise sense. Given two
sets, one of which is a subset of the other, their power sets are in the same subset relationship.
This is the content of the next proposition. Related results exploring how the power set
operator interacts with the operations of intersection and union are left for the exercises (see
Exercises 32 – 37).

PROPOSITION 4.2 - 4: Subset Inclusion and Power Sets
S ⊆ T → P(S) ⊆ P(T )

Proof :

The proof here is trivial if you grab it in the right place. To see what to do, we’ll use the
Method of Backward Proof Analysis .

Assuming the antecedent of the given conditional as our supposition for Conditional
Proof , we must prove the consequent. So we concentrate on that. It’s a subset claim,
which is proved by taking an element of the first set and showing that it also belongs to
the second set. Now that we know how we want to start and where we want to go, we
can begin to think about what the antecedent offers us. Focusing too early on what’s
given might confuse the proof by obscuring what needs to be proved.

So now suppose that S ⊆ T , and let X ∈ P(S).
Then X ⊆ S.
Since S ⊆ T , X ⊆ T , too.
Thus X ∈ P(T ).

EXERCISE SET 4.2

Problems 1 - 3: Pairing Sets

The following problems explore the notions of being a singleton and a doubleton.

1. Let S = {0} and T = {0, 1}. What is {S, T}? Exhibit this set using only set-braces and the numbers 0
and 1.
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*2. Let S = {0} and T = {0, 1}.

a. Exhibit the set R = T ∪ {T}, using only set-braces and the numbers 0 and 1.

b. Is S ⊆ R? Is S ∈ R? Explain.

c. Is T ⊆ R? Is T ∈ R? Explain.

3. Verify the claims made in the solution to Example 4.2-2b, that the doubleton {S, T} differs from the
sets S, T , S ∩ T , S ∪ T , and S − T in the case where S is the set of even numbers and T is the set of
odd numbers.

Problems 4 - 5: Finite Collections of Sets

Work the following problems on finite collections of sets.

*4. A collection C consists of the sets I2, I3, and I4, where In denotes the set of all integers that are multiples
of n.

*a. List the elements of I2, I3, and I4.

*b. Determine
⋂

S∈C

S.

c. Determine
⋃

S∈C

S.

5. A collection C consists of the sets I2, I3, I9, and I12, where In denotes the set of all integers that are
multiples of n.

a. List the elements of I2, I3, I9, and I12.

b. Determine
⋂

S∈C

S.

c. Determine
⋃

S∈C

S.

Problems 6 - 8: Plenty of Nothing

The following problems focus on distinguishing the empty set from collections that contain it.

*6. Explain why {∅} 6= ∅.

*7. Explain why {{∅}} is different from both {∅} and ∅.

8. Explain why {∅, {∅}} is different from ∅ and also from {∅} and {{∅}}.

Problems 9 - 10: True or False

Are the following statements true or false? Explain your answer.

*9. {5, 6, ∅} is a subset of {5, 6, 7}, since {5, 6} is a subset of {5, 6, 7} and ∅ is a subset of everything.

10. The basic properties that held for intersection and union of two sets also hold for any collection of sets.

Problems 11 - 12: Explanations

Explain the following terms/results in your own words.

11. Explain what a partition of a set is and give a concrete everyday example to illustrate it.

*12. Explain what the power set of a set is. If a given set S is a collection of people and subsets of S are
considered committees formed from these people, what does P(S) represent?

Problems 13 - 14: Extending Set-Theoretic Definitions

The following problems deal with extending binary set operations to finitely many sets.

13. Use recursion to define the intersection

n
⋂

i=1

Si of finitely many sets Si.

*14. Use recursion to define the union

n
⋃

i=1

Si of finitely many sets Si.
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Problems 15 - 16: Infinite Indexed Collections of Sets

The following problems use an indexed collection sets. The notation used is analogous to that of infinite
series.

*15. For each i in N +, let Qi =

(

−
1

i
,
1

i

)

be an open interval about 0 and Di =

[

−
1

i
,
1

i

]

be the associated

closed interval. Determine the following sets.

*a.

∞
⋂

i=1

Qi *b.

∞
⋃

i=1

Qi

c.

∞
⋂

i=1

Di d.

∞
⋃

i=1

Di

*16. For each i in N +, let Oi =

(

−
i

i + 1
,

i

i + 1

)

be an open interval about 0 and Ci =

[

−
i

i + 1
,

i

i + 1

]

be

the associated closed interval. Determine the following sets.

a.
∞
⋂

i=1

Oi b.
∞
⋃

i=1

Oi

*c.
∞
⋂

i=1

Ci *d.
∞
⋃

i=1

Ci

Problems 17 - 19: Properties of Intersections and Unions

Prove the following propositions.

17. Prove Proposition 4.2-1b, that union distributes over intersection: R ∪

(

⋂

S∈C

S

)

=
⋂

S∈C

(R ∪ S) .

18. Prove Proposition 4.2-2, De Morgan’s Laws for complements of total intersections.

a.
⋂

S∈C

S =
⋃

S∈C

S

b.
⋃

S∈C

S =
⋂

S∈C

S

19. Prove the following subset order properties from Proposition 4.2-3.

a.
⋂

S∈C

S ⊆ T for all T ∈ C .

b. T ⊆
⋃

S∈C

S for all T ∈ C .

c. S ⊆ R for all S ∈ C iff
⋃

S∈C

S ⊆ R .

Problems 20 - 24: Pairwise Disjoint Sets

The following problems explore notions of disjoint sets.

*20. Prove that if a collection C of two or more sets is pairwise disjoint, then
⋂

S∈C

S = ∅.

21. Is the converse to Problem 20 true or false? If it is true, prove it. If it is false, give a counterexample.

*22. Is it possible to find a collection C so that the intersection of every pair of distinct sets in C is nonempty
while the total intersection of the collection is empty? Support your claim.

EC 23. Given a finite collection of distinct sets Si for i = 1, 2, . . . , n, show how to generate a new but related
collection of sets Di that has the same union as the original collection but is pairwise disjoint.

EC 24. Given an infinite collection of distinct sets Si for i ∈ N, is it possible to generate a collection of sets Di

that has the same union as the original collection but is pairwise disjoint? Why or why not?
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Problems 25 - 29: Partitions

The following problems explore the idea of a partition.

25. Write out Definition 4.2-4 using the vocabulary of PL, indicating all quantifiers and logical connectives
in their proper places.

*26. Let Rn denote all those natural numbers that leave remainder n when divided by 7 for n = 0, 1, 2, . . . , 6.
Explain why this collection of Rn is a partition of N.

*27. Let Sn = {0, 1, . . . , n} denote the initial segment of N from 0 through n. Does the collection of all Sn

form a partition of N ? Why or why not?

28. Let Pn be the set of all natural numbers that are powers of a prime number n. Does the collection of
Pn for all prime numbers n form a partition of N ? Why or why not?

EC 29. Let Si denote a collection of finite sets for i = 1, 2, . . . , n, and let S be the total union of this collection.
Define a new collection Cm by Cm = {x : x belongs to exactly m sets of the original collection} for m =
1, 2, . . . , n. Is the collection {Cm} a partition of S or not? Explain.

Problems 30 - 31: Numerosity of the Power Set

The following problems concern the size of the power set P(S) of a set S.

*30. Determine P(S) for the following sets S.

*a. S = {1}
*b. S = {1, 2}
c. S = {1, 2, 3, 4}

*31. Numerosity of the Power Set

*a. Generalize Problem 30 and Example 6: if S has n elements, P(S) contains elements. Prove
your result using PMI.

*b. How is the result you obtained in part a related to the alternative notation that is sometimes used
to stand for the power set, namely, 2S? Why do you think P(S) is called the power set of S?

Problems 32 - 37: Properties of Power Sets

Prove the following results on properties of power sets.

*32. Prove P(S ∩ T ) = P(S) ∩ P(T ).

33. Prove P

(

⋂

S∈C

S

)

=
⋂

S∈C

P(S).

34. Prove P(S ∪ T ) ⊇ P(S) ∪ P(T ).

35. Prove P

(

⋃

S∈C

S

)

⊇
⋃

S∈C

P(S).

36. Can the superset relation in Problems 34 – 35 be turned around? If so, prove it; if not, give a counter-
example.

37. Can the conditional in Proposition 4.2-4 be turned around? If so, prove it; if not, give a counterexample.

EC 38. Duality Principle for Set Theory?
Several propositions have exhibited a sort of duality between intersection and union (see the remarks
following the proof of Proposition 4.1-5). Formulate a Duality Principle for Set Theory and then explore
the truth of your statement by verifying it or refuting it in a variety of specific instances. If you arrive
at a final formulation of the principle that you think is true, give an argument to justify it.
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HINTS TO STARRED EXERCISES 4.2

2. a. Start with what R is and replace T by what it is equal to.

b. Keep straight that S = {0}; S 6= 0.

c. For this part it will be simpler to use the original definition of R and T instead of your answer to
part a.

4. a. [No hint.]

b. This intersection is the same as I2 ∩ I3 ∩ I4.

6. For two sets to be equal, each must contain the elements of the other.

7. Think of sets as collectors for their elements, and recall when two sets are equal.

9. [No hint.]

12. [No hint.]

14. Recursion needs an initialization step (n = 1) and an induction step (passing from n = k to n = k + 1).

15. [No hint.]

16. [No hint.]

20. Use a CP proof strategy; review the definition of intersection to see what needs proving.

22. No fancy collection is needed here for a counterexample. Three small sets will do.

26. This is similar to Example 1. Review the requirements for being a partition.

27. Review the requirements for being a partition, and check whether they are met by this collection.

30. See Example 6.

31. a. Find a formula involving n. The induction argument should start at n = 0. For the induction step,
temporarily remove some element to help you make the necessary connection.

b. Look at the formula you obtained in part a.

32. Use your knowledge of when two sets are equal and the definition of the power set. You should be able
to string iff-statements together here.



4.3 Multiplicative Counting Principles

Sections 4.1 and 4.2 laid the basic set-theoretic groundwork for several themes that we will
be exploring in this text. In the rest of this chapter we will look at two main topics, both
closely connected with numerosity; i.e., with the number of elements belonging to a set.

We will begin by considering some elementary topics in combinatorics, learning how to enu-
merate possibilities in a variety of additive and multiplicative situations involving arrangements
or combinations. This will be our focus in this section and the next two.

In the next chapter we will investigate the issue of numerosity a bit more theoretically,
looking at some issues related to infinite sets. This ties in with how Set Theory originated; it
has both technical and philosophical dimensions that are relevant to mathematics and computer
science.

Ordered Pairs and Cartesian Product of Sets

The final binary set-theoretic operation we will consider is Cartesian product. This opera-
tion will enable us to treat relations and functions as an integral part of Set Theory. It is also
an important pillar of our treatment of combinatorics.

The Cartesian-product operator takes two sets S and T and forms the set S × T of all
possible ordered pairs from them. We’ll introduce this notion via an example and then give
the formal definition.

z EXAMPLE 4.3 - 1

A not-very-style-conscious mathematics professor owns eight different shirts (call them
S1, S2, . . . , S8) and six different trousers (label them T1, T2, . . . , T6). If his wife weren’t
around, he would no doubt end up wearing any shirt with any pair of pants. Use the notion
of ordered pairs and Cartesian product to indicate all the potential outfits this prof might
show up wearing to class.

Solution
Each ordered pair (Si, Tj) represents one outfit that might be worn. The set S × T of all
such ordered pairs {(Si, Tj) : 1 ≤ i ≤ 8, 1 ≤ j ≤ 6} gives the collection of all possible outfits.
This gives a total of 48 different outfits, some of them probably pretty poorly matched.

DEFINITION 4.3 - 1: Cartesian Product
S × T = {(x, y) : x ∈ S ∧ y ∈ T}.

Our definition of Cartesian product assumes the idea of an ordered pair. This seems reason-
able; everyone is familiar with ordered pairs from graphing points and functions in elementary
algebra. In a rigorous systematic development of this topic, however, the Cartesian-product
operator would be more thoroughly grounded in Set Theory by defining ordered pairs in terms
of sets. Since this would introduce a higher order of abstractness into the discussion, we will
leave it for the exercises (see Exercises 17 – 19).

Cartesian products cannot be pictured by means of Venn diagrams, but they can often be
graphed nevertheless, as the following example illustrates.

z EXAMPLE 4.3 - 2

a) If S = {1, 2, 3, 5} and T = {1, 3, 4}, graph the Cartesian product S × T .
b) If S = [1, 5] and T = [1, 4], graph the Cartesian product S × T .
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Solution

a) S × T = {(1, 1), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 3), (3, 4), (5, 1), (5, 3), (5, 4)}.
This can be plotted as a set of 12 distinct points in a coordinate grid, as illustrated
below.

b) For S being the entire closed interval of real numbers [1, 5] and T being the closed
interval [1, 4], S × T consists of all possible points on or inside the rectangular region
{(x, y) : 1 ≤ x ≤ 5; 1 ≤ y ≤ 4}. This is also plotted below, as the shaded region.
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S × T [1, 5]× [1, 4]

It is possible to explore how the operation of Cartesian product interacts with the other
ones already given. A number of these properties are given in the exercises (see Exercises
29 – 39). We will have little occasion to use them in the remainder of this book, but working
them will help you become better acquainted with the idea of a Cartesian product as well as
the other operations.

Besides the notions of ordered pairs and Cartesian products, we will want to use their gener-
alizations: ordered n-tuples (x1, x2, . . . , xn) and n-fold Cartesian products S1 × S2 × · · · × Sn

and Sn = S × S × · · ·× S. As above, we will assume the notion of an ordered n-tuple as given
(see Exercises 20 – 23 for a more explicit definition), and we will use it to define finite Cartesian
products. The related notion of a finite sequence is also defined using these ideas.

DEFINITION 4.3 - 2: Finite Cartesian Products

a) S1 × S2 × · · · × Sn = {(x1, x2, . . . , xn) : xi ∈ Si}.

b) Sn = {(x1, x2, . . . , xn) : xi ∈ S}.

DEFINITION 4.3 - 3: Finite Sequences

a) A finite sequence (x1, x2, . . . , xn) of length n selected from a set S is an element of Sn.

b) A finite sequence without repetition selected from a set S is a finite sequence in which
no element of S appears more than once: xi 6= xj if i 6= j.

Multiplicative Counting Principle

If a first action can be done in m ways and for each of these m ways a second action can be
done in n ways, then the total compound action—first action, second action —can be done in
m× n ways. We already saw this to be the case in Example 1: there were 8× 6 = 48 different
outfits that could be made from the pants and shirts available. This Multiplicative Counting
Principle follows from the fact that the cardinality (numerosity) of the Cartesian product of
two sets is the product of the cardinalities of the sets (see Proposition 1 below).
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DEFINITION 4.3 - 4: Cardinality of a Set
The cardinality of a set S, denoted by |S|, is the number of elements contained in S.

This definition basically defines cardinality in terms of numerosity, which is merely a better
known synonym. Thus, the cardinality of a set S tells how many members it has. We will
associate a cardinality, a number size, with each set S, whether it is finite or infinite. What
sense this makes for infinite sets will be taken up later. For the rest of this chapter, however,
we will assume a context of finite sets, where the concept is intuitively clear.

The following proposition uses × in two ways: as the set-theoretic notation for Cartesian
product, and as the ordinary multiplication symbol for numbers. The connection asserted by
this proposition is the motivation for why × gets used for the Cartesian product operator.

PROPOSITION 4.3 - 1: Cardinality of Cartesian Products

a) |S × T | = |S| × |T |

b) |S1 × S2 × · · · × Sn| = |S1| × |S2| × · · · × |Sn|

c) |Sn| = |S|n

Proof :

See Exercises 24 – 25.

COROLLARY 1: Multiplicative Counting Principle
If one choice can be made in m ways and for each of these choices a second choice can be
made in n ways, then the combined joint choice can be made in m × n ways.

Proof :

Model the choices using ordered pairs (first choice, second choice) from two sets F and S.
Then the set of all the different combined choices is the associated Cartesian product F ×S.
Proposition 1a yields the result claimed.

The last result can be generalized to any finite sequence of component choices. This yields
the following corollary.

COROLLARY 2: Generalized Multiplicative Counting Principle
If each of k choices can be made in ni ways for i = 1, 2, . . . , k, then the total number of

distinct choice sequences of length k is

k∏

i=1

ni = n1 · n2 · · ·nk.

Proof :

This follows immediately from Proposition 4.3-1b or by applying mathematical induction
to Corollary 1 (see Exercise 26).

The Multiplicative Counting Principle, in either of its two forms, lies behind several different
counting techniques. We’ll explore some of these in the rest of this section and some more in
Section 4.4. We will introduce the next one with an example.

z EXAMPLE 4.3 - 3

A byte is an 8-bit string, such as 01010101, each bit (binary digit) being either a 0 or a 1.
a) How many distinct bytes are possible?
b) How many of them begin or end with four 0s?
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Solution
a) Since each bit has 2 possibilities, 0 or 1, and each one can be chosen independently of

the others, an eight-bit string can be formed in 28 = 256 ways.
b) If a byte begins with four 0s, there are 24 = 16 different ways to finish the byte. This

is also the total number of such bytes.
If a byte ends with four 0s, there are 16 ways to begin the byte, and so again there are
16 different bytes.
The only byte counted as a part of both sets is the one that starts and ends with four
0s; i.e., the byte with all zeros. Counting this only once, we have 16 + 15 = 31 bytes
that start or end with four zeros.

Ordered Choice With Repetition

Example 3 can be thought of as creating choice sequences of length eight by selecting each
component bit from the same sample space of two available possibilities, the set {0, 1}. Each
choice is permissible, regardless of how the last choice was made; both 0 and 1 can be used
repeatedly. This is an example of an Ordered Choice with Repetition taken from a common
sample space.

PROPOSITION 4.3 - 2: Counting Ordered Choices with Repetition
Suppose S is a sample space of n elements. Then the total number of choice sequences of
length k with elements selected from S, allowing repetition, is nk.

Proof :

This is a simple application of the Generalized Multiplicative Counting Principle with each
ni = n.

z EXAMPLE 4.3 - 4

An IA license plate has three letters followed by three numbers. If any letters and any
numbers can be used, how many distinct IA license plates can be made?

Solution
This requires a combination of the counting methods we’ve introduced so far.
By the method for counting ordered choices with repetition, there are 263 ways that three-
letter words can be made, and there are 103 three-digit numbers (we include 000).
Thus, using the Multiplicative Counting Principle, there are 263 ·103 = 17, 576, 000 different
license plates possible. Since there are around 3, 107, 000 people in IA (and pigs and cows
can’t drive), this number is quite adequate for IA, even if everyone owned a few vehicles.

Permutations: Ordered Choice Without Repetition

Let’s now consider the case where the sample space is gradually being depleted each time a
choice is made, so that no repetition of choice is allowed. Suppose, moreover, that order remains
important: think of the choice as being made sequentially, as before. Counting the number
of total choice sequences of a given length can still be done via the Generalized Multiplicative
Counting Principle.

z EXAMPLE 4.3 - 5

In a cross-country race, the places of the first five runners of each team to cross the finish
line are counted toward the scoring. If a team has 12 runners entered in a race, in how
many different ways might these players contribute toward the score of their team?
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Solution
The number of different ways runners can potentially finish in the first five places for their
team is 12 ·11 ·10 ·9 ·8 = 95,040. Note that if this number were both multiplied and divided
by 7!, we would have our answer in the more compact form 12!/7! .

If you are calculating the number of choice sequences without repetition for fairly short
sequences (as in the last example), it is probably easiest to multiply the k factors together.
But the factorial formula indicated there is better for long sequences. It also comes in handy
when you’re using such a result in a computer program or calculating the number by hand,
since you can then make use of the built-in factorial function on your calculator or computer.

We will now provide the theory behind the counting process exhibited in this example.
Proposition 4.3-3 summarizes the outcome, but we first introduce some standard terminology.

A permutation of a set S is an ordered arrangement of all its elements. Arrangements can
be thought of as arising by selecting elements of a set in succession until it is exhausted. Each
permutation is thus uniquely associated with ordered choice sequences in which all the elements
of the sample space appear exactly once, with a choice sequence without repetition of length
n, where n = |S|.

If k distinct things from the full sample space S are arranged without repetition, we have a
k-permutation of S. Such arrangements are uniquely associated with choice sequences without
repetition of length k. A k-permutation in which k = |S| is thus just an ordinary permutation
of S.

Given this association between arrangements and choice sequences, we can formally define
permutations as follows.

DEFINITION 4.3 - 5: Permutations

a) A permutation of a set S with |S| = n is an ordered n-tuple (x1, x2, . . . , xn) with xi 6= xj

for i 6= j.

b) A k-permutation of a set S with |S| = n is an ordered k-tuple (x1, x2, . . . , xk) with
xi 6= xj for i 6= j.

PROPOSITION 4.3 - 3: Counting k-Permutations / Ordered Choices without Repetition
Suppose S is a sample space of n elements. Then the total number of k-permutations of S

is given by P (n, k) = n · (n − 1) · · ·(n − (k − 1)) =
n!

(n − k)!
.

Proof :

From the Generalized Multiplicative Counting Principle, the number of choice sequences of
length k from S, not allowing repetition, is n · (n − 1) · · ·(n − (k − 1)). This is thus the
number of k-permutations of S.
Multiplying and dividing by (n − k)! gives the result in factorial format.

COROLLARY : Counting Permutations
The total number of distinct permutations of a set S is n!, where n = |S|.

Proof :

This is an easy corollary of the last proposition, taking k = n. (Recall that 0! = 1.)

z EXAMPLE 4.3 - 6

A quiz has 10 matching questions on it with 10 possible answers. If it is answered randomly
by someone who forgot to study the material, how many different quizzes can be turned in,
assuming each answer is used exactly once.
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Solution
There are 10! = 3, 628, 800 different ways this quiz can be filled in. Presumably, only one
of them is correct, so pure guessing wouldn’t be a very high-percentage strategy.

z EXAMPLE 4.3 - 7

Call any character string formed by the first seven letters of the alphabet a,b, . . . , g a full
scrabble segment.
a) How many full scrabble segments are there?
b) How many full scrabble segments have the vowels a and e next to each other?
c) How many full scrabble segments have the vowels separated from each other?
d) Are there any full scrabble segments that make a real word (called a bingo)?

Solution

a) There are 7! = 5040 full scrabble segments: our sample space is S = {a, b, c, d, e, f, g},
and we are counting its permutations.

b) In order to work this problem, think of a and e as forming a vowel-block, and consider
each of the other letters as individual consonant blocks.
We must now choose six blocks in succession (our sample space consists of these six
blocks now, not letters) without repetition. There are 6! = 720 of these block-sequences.
Since the vowel block can appear either as ae or ea, the joint choice (block sequence,
vowel arrangement) yielding our full scrabble segment can be done in 720 · 2 = 1440
ways.

c) If 1440 of the 5040 full scrabble segments have the a and e next to one another, the
other 5040− 1440 = 3600 full scrabble segments must not.

d) Here we’re going beyond what mathematics can decide. According to a Scrabble expert
I consulted, no full scrabble segment forms a genuine word.

EXERCISE SET 4.3

Problems 1 - 3: Cartesian Products

Determine the following Cartesian products.

*1. Write out the elements of the Cartesian product E × P , where E is the set of positive even integers less
than 10 and P is the set of primes less than 10. Then graph this set in a coordinate grid.

2. Determine the Cartesian product of Z×Z, where Z is the set of all integers. Then graph this set. (This
is called the set of integer lattice points.)

3. What does the graph of S × S look like, where S is the set of non–negative real numbers?

Problems 4 - 6: Scrabble Segments

The following problems deal with scrabble segments (see Example 7 above for a definition).

4. How many full scrabble segments have all five consonants together?

*5. How many full scrabble segments have the letters a and e separated by the letter c?

*6. How many full scrabble segments have the vowels a and e separated by one consonant? by two conso-
nants?

Problems 7 - 11: Palindromes

A palindrome is any number that reads the same way forward and backward, such as 54321012345. Repetition

is permitted, but no such number is written with a leading 0.

*7. How many seven-digit palindromes are there? How many of them are even numbers?
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8. How many eight-digit palindromes are there? How many of them are odd numbers?

*9. How many palindromes are there of length 2n + 1?

10. How many palindromes are there of length 2n?

EC 11. Find a formula that gives the total number of palindromes of length n.

Problems 12 - 14: Counting Divisors

The following problems have to do with the numbers of factors a number has.

*12. Factors of 60

a. List and count the number of distinct divisors of 60 (include both 1 and 60).

b. Factor 60 into a product of powers of primes. How do the prime factors of divisors of 60 relate to the
prime factors of 60?

c. Using your result in part b and the methods of this section, count the total number of distinct divisors
of 60.

13. Factors of 72

a. List and count the number of distinct divisors of 72 (include both 1 and 72).

b. Factor 72 into a product of powers of primes. How do the prime factors of divisors of 72 relate to the
prime factors of 72?

c. Using your result in part b and the methods of this section, count the total number of distinct divisors
of 72.

14. Numbers of Factors and Prime Factorization

a. If n = p · q, where p and q are both prime numbers, how many factors will n have? Explain.

b. If n = pk · qm, where p and q are prime numbers, how many factors will n have? Explain.

EC c. If n = pn1

1 · pn2

2 · · ·pnk

k
where all pi are prime numbers, how many distinct divisors does n have?

Explain using the methods of this section.

Problems 15 - 16: True or False

Are the following statements true or false? Explain your answer.

*15. Let S be any set with T = {1}. Then S ⊆ S × T .

16. If S = {2, 4, 6} and T = {3, 5, 7}, then SxT = {2 ∗ 3, 4 ∗ 5, 6 ∗ 7} = {6, 20, 42}.

Problems 17 - 19: Rigorously Defining Ordered Pairs

The following unusual but ingenious definition of ordered pair is due to Norbert Wiener (1914 ) as simplified
by Kasimierz Kuratowski (1921 ). It allows ordered pairs to be treated as special kinds of ordinary (non-

ordered) sets and so be incorporated into Set Theory as a derivative notion.

Definition of Ordered Pair: (x, y) = {{x}, {x, y}} .

*17. Write the set-theoretic representation for the ordered pair (0, 1).

*18. What ordered pair does {{2, 3}, {3}} represent?

EC 19. Using the above definition and given your intuitions about singletons and doubletons, when will (a, b) =
(c, d)? Give a proof of your result.

Problems 20 - 23: Defining Ordered n-tuples

Ordered n-tuples can be defined recursively, using ordered pairs as a basis. The recursive clause is as follows:

Definition of Ordered n-tuple: (x1, x2, . . . , xn, xn+1) = ((x1, x2, . . . , xn), xn+1).

20. Ordered Triples

a. Determine what an ordered triple (a, b, c) is in terms of ordered pairs.

b. Determine what an ordered triple (a, b, c) is in its most primitive form, using the Wiener-Kuratowski
definition of ordered pair to reduce it as far as possible (see above).
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*21. Ordered Quadruples
Write down the definition for a 4-tuple (a, b, c, d) and then work it backwards to express it in terms of
ordered pairs.

22. Ordered Quintuples

Based on the pattern of Problems 20 - 21, what do you think (a, b, c, d, e) is expressed in terms of ordered
pairs? Prove your conjecture by working it down into its primitive form via the recursive definition.

23. If the above definition is the inductive clause of the definition, what is the initialization clause? Why
can’t the initialization clause begin with n = 1?

Problems 24 - 26: Cardinality of Cartesian Products

Prove the following results about the cardinality of Cartesian products.

*24. Prove Proposition 4.3-1a: If |S| = m and |T | = n, then |S × T | = m × n. Hint: what main proof
techniques do you have available to show that a result holds for all natural numbers m and n? Use a
combination of both direct approaches.

25. Use PMI and Proposition 4.3-1a (Problem 24) to prove Proposition 4.3-1b: |S1 × S2 × · · · × Sn| =
|S1| × |S2| × · · · × |Sn|.

26. Use mathematical induction to prove Corollary 2 to Proposition 4.3-1: If each of k choices can be made

in ni ways, then the total number of distinct choice sequences of length k is n1 · n2 · · ·nk.

Problems 27 - 28: Strings and Finite Sequences

Strings a1a2 · · ·ak of length k can be considered finite sequences of length k (though written without paren-

theses or commas), each entry ai coming from some common alphabet set A. The set of all such k-strings

is denoted by Ak. A∗ =

∞⋃

k=1

Ak is thus the set of all finite strings formed from the alphabet.

27. Let A be the English alphabet, with |A| = 26.

a. How many strings are there of size 5? How many 5-strings are there if no repetition is permitted?

b. What does A∗ represent in this case?

*28. Let A be the set of digits 0, 1, . . . , 9.

a. How many strings are there of size 6? How many are there if the first entry is non-0?

b. What does A∗ represent in this case?

Problems 29 - 39: Theorems About Cartesian Products?

Determine whether the following results about Cartesian products are theorems of Set Theory or not. If they

are true, illustrate them via an appropriate diagram and then prove them; if they are not, provide a specific

counterexample. If you see an obvious way to fix a false result, restate it and then prove it.

29. ∅ × S = ∅ = S × ∅

30. S × T = ∅ ↔ S = ∅ ∨ T = ∅

*31. S × T = T × S

32. S1 ⊆ S2 ∧ T1 ⊆ T2 ↔ S1 × T1 ⊆ S2 × T2

33. R × (S ∩ T ) = (R × S) ∩ (R × T )

*34. R × (S ∪ T ) = (R × S) ∪ (R × T )

35. R × (T − S) = (R × T ) − (R × S)

36. (S1 × T1) ∩ (S2 × T2) = (S1 ∩ S2) × (T1 ∩ T2)

37. (S1 × T1) ∪ (S2 × T2) = (S1 ∪ S2) × (T1 ∪ T2)

38. (S1 × T1) − (S2 × T2) = (S1 − S2) × (T1 − T2)

EC 39. S × T = S × T
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HINTS TO STARRED EXERCISES 4.3

1. See Example 2. Also, recall that 1 is not prime.

5. Consider the three mentioned letters as one block and each of the remaining letters as their own block.
Don’t forget to consider all the ways the big block can be rearranged.

6. Use the same method that you applied to Exercise 5.

7. In counting these, note that the last three numbers of the palindrome are completely determined by the
first three.

9. Generalize what you did in Exercise 7.

12. a. [No hint.]

b. Compare how each divisor of 60 can be factored to the way 60 was factored.

c. Each divisor of 60 has 0, 1, or 2 factors of 2; etc. Use this to count the total number of divisors.

15. [No hint.]

17. Replace the x’s in the definition with 0 and the y’s with 1.

18. Recall that sets are non-ordered. Thus {{2, 3}, {3}}= {{3}, {2, 3}}, etc.

21. Rewrite the ordered quadruple as the ordered pair containing an ordered triple and a single element,
then break down the ordered triple similarly.

24. Review the recursive definition of multiplication of m · n (Definition 3.3-4). Which of the two numbers
does the induction clause work with? Use PMI on that number here.

28. a. Think in terms of the numbers being represented.

b. If you only had strings starting with a non-0 digit, what would A∗ be? How does allowing a beginning 0
change A∗?

31. Two well-chosen small sets will give a counterexample here. It would be a good exercise to prove in
general that the cardinality of these two sets, however, are equal.

34. Use a string of iffs to argue the set membership statement needed, making use of an SL Replacement

Rule.



4.4 Combinations

We’re now able to count the number of ways in which a compound action can occur,
provided order is important —both when a repeated choice is allowed and when it isn’t (per-
mutations). We modeled this situation set-theoretically via Cartesian products and finite
sequences of different sorts, and we found ways to count the possibilities based ultimately on
the Multiplicative Counting Principle.

In this section we will focus on combinations, compound events where order is irrelevant.
We will model this situation not with finite sequences taken from some sample space, but with
finite subsets of a sample space. To count them, we must develop a method of determining the
cardinality of subsets.

We will look at several applications of this topic. One important mathematical application
is that of evaluating binomial coefficients in the expansion of (a + b)n; these coefficients are
the numbers found in Pascal’s Triangle. Counting permutations and combinations also forms
an important foundation for discrete probability theory. We will introduce this topic here, but
barely: lots more can be done with this than we have time to spend on it.

Combinations: Unordered Choice Without Repetition

Suppose we have a sample space S of n different elements to choose from, and we pick k of
them, with no concern for the order in which they are chosen and without allowing repetition.
Think of choosing them all at once instead of sequentially. In how many different ways can
this activity be done?

Essentially, this question asks: how many different subsets of size k does a set of size n
have? Distinct combinations are associated with distinct subsets. This number is denoted by
one of three notations: by C(n, k) or nCk, which indicates the number of k-combinations from

a set of size n; or by

(

n
k

)

, which is read as “n choose k” or as “n binomial k” (see below).

We’ll answer this question by building on what we did in Section 4.3 with ordered choice.
We will first count the number of ordered combinations (permutations), and then we will divide
out by the duplication number introduced by the ordering. The same set of elements can appear
in numerous ways if order is taken into account, but we should count these only once if order
is to be neglected.

An ordered set of k elements, without repetition, is a k-permutation. For a sample space

S with |S| = n, there are P (n, k) = n · (n − 1) · · · (n − (k − 1)) =
n!

(n − k)!
such permutations.

Each distinct permutation belongs to a set of k! permutations, all having the same elements
but in different orders. To count this as a single combination, we must divide our total by the
multiplicity involved. This yields the following proposition.

PROPOSITION 4.4 - 1: Counting Combinations without Repetition
Let S be a sample space of n elements. Then the total number of subsets of S of size k is

given by C(n, k) =

(

n
k

)

=
n · (n − 1) · · ·(n − (k − 1))

k!
=

n!

k! (n − k)!
.

An easy way to remember these formulas is to note that in the first expression the numerator
and denominator have the same number of k factors, one going down from n, the other coming
up from 1. In the second expression, the values whose factorials are being multiplied in the
denominator (k, n−k) add up to the number whose factorial is being taken in the numerator (n).
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z EXAMPLE 4.4 - 1

a) A math prof has 7 whiteboard markers sitting on her desk. If she takes 3 of them to
class, in how many different ways can she do this?

b) How many subsets of size 3 does a set of size 7 have? How many subsets of size 4?

Solution
a) This problem asks how many different combination of 3 markers can be chosen from a

sample space of 7 markers: it’s a combination-without-repetition problem.

The total number is thus

(

7
3

)

=
7 · 6 · 5

1 · 2 · 3
=

7!

3! 4!
= 35 distinct trios of markers.

b) There are 35 distinct subsets of size 3 in a set of size 7; this is just the abstract version
of the last part.
There are also 35 distinct subsets of size 4. This is not a coincidence. For example,
every choice of 3 markers in part a leaves a corresponding set of 4 markers in the prof’s
office. Furthermore, the formula for the total number of subsets of size k is exactly the

same as that for subsets of size n − k:

(

n
k

)

=

(

n
n − k

)

. This makes sense in terms of

the subsets, as just noted: associated with each subset of size k there is a unique subset
of size n − k; namely, its complement inside the sample space.

Combinations, Binomial Coefficients, and Pascal's Triangle

The method of counting combinations-without-repetition can be used to determine the
coefficients appearing in the expansion of the binomial (a + b)n for a positive integer n. For
instance, (a + b)3 = a3 + 3a2b + 3ab2 + b3. Calculating (a + b)n as an n-fold product gives
the following theorem. This result is generalized to other sorts of exponents in introductory
calculus.

THEOREM 4.4 - 1: Binomial Expansion Theorem

Let a and b be real numbers and n be a natural number. Then (a + b)n =
n

∑

k=0

(

n
k

)

an−kbk.

Proof :

Since (a + b)n = (a + b)(a + b) · · ·(a + b), the different terms in the expansion arise by
choosing one factor from each binomial expression (either a or b) and then multiplying
them together to get an n-fold product. We will focus on the ways to form the powers bk.
Choosing no b’s gives an; there is only one way this occurs. This can be done in exactly
(

n
0

)

= 1 way, giving an.

Choosing one b and all a’s for the other factors, the term an−1b arises; this can be done in
(

n
1

)

= n ways; this yields the term nan−1b.

Similarly, the coefficient of an−kbk is

(

n
k

)

for every k; that of bn is

(

n
n

)

= 1.

Thus, the entire binomial expansion can be written as (a + b)n =
n

∑

k=0

(

n
k

)

an−kbk .

The binomial coefficients can be put into a triangular array known as Pascal’s triangle.*

Row n of the triangle gives the sequence

{(

n
k

)}n

k=0

, starting with n = 0 as the top row.

* This is named after the seventeenth-century French mathematician Blaise Pascal, who investigated its properties. It was
known several centuries earlier, however, both to Arabic mathematicians and Chinese mathematicians.
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
. . . . . .

. . . . . . .
. . . . . . . .

Pascal’s Triangle: Binomial Coefficients

Pascal’s triangle can be generated recursively from the top two rows. Each later row begins
and ends with a 1, and all intermediate numbers are generated by adding the two adjacent
numbers directly above them. In the last row exhibited, 4 = 1 + 3, 6 = 3 + 3, and 4 = 3 + 1.
Pascal’s triangle is a favorite for finding patterns of numbers. Some of these are explored in
the exercises (see Exercises 18 – 25).

z EXAMPLE 4.4 - 2

Expand (1 + 1)n as a binomial and explain its meaning for the numerosity of P(S).

Solution
On the one hand, (1 + 1)n = 2n.

On the other hand, (1 + 1)n =
n

∑

k=0

(

n
k

)

1n−k1k =
n

∑

k=0

(

n
k

)

.

So 2n =
n

∑

k=0

(

n
k

)

.

If S is a set of size n, it has

(

n
k

)

subsets of size k. Therefore,
n

∑

k=0

(

n
k

)

represents the total
number of subsets of S.

Thus, the cardinality of P(S) is 2n.

Permutations, Combinations, and Discrete Probability

The probability of an event is a measure of how likely it is to occur. Being able to count
numbers of permutations and combinations makes it possible to calculate the theoretical prob-
ability of certain events. We will state the classical relative-frequency definition for discrete
probability and then look at a few fairly standard examples.

DEFINITION 4.4 - 1: Discrete Probability
The probability that a certain event will occur is the relative frequency with which it can
occur: i.e., the ratio of the number of favorable ways the event can occur to the total number
of possible outcomes.

This definition assumes that each possibility in the sample space S (the set of all possible
outcomes) is equally likely. Under this assumption, the probability of an event E occurring is

given by the formula P (E) =
|E|

|S|
. Note that the probability of an event occurring satisfies the

double inequality 0 ≤ P (E) ≤ 1 since ∅ ⊆ E ⊆ S.

z EXAMPLE 4.4 - 3

A fair coin is tossed five times.
a) What is the probability that exactly three heads will occur?
b) What is the probability that exactly three tosses land the same way?
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Solution

a) Take the sample space S to be all 5-tuples of H ’s and T ’s (potential toss outcomes).
There are 25 = 32 outcomes possible, all of them equally likely if the coin is fair.
To get exactly 3 heads, this must happen on 3 specific tosses. The number of ways 3

tosses can be chosen out of 5 is

(

5
3

)

= 10 ways.

Thus the probability of getting exactly three heads is 10/32 = 5/16 = .3125.

b) If exactly three tosses land the same way, these can be either heads or tails. There are 10
ways for each of these to occur. So the probability of this event is 20/32 = 5/8 = .625.
Note that since these two sub-events are disjoint (3 heads; 3 tails), their individual
probabilities add up to the total probability: 5/16 + 5/16 = 5/8.

z EXAMPLE 4.4 - 4

Two dice are rolled. What is the probability of getting a 7? An 11? A 7 or an 11?

Solution
Each die has six possible outcomes, so tossing a pair of dice yields 36 distinct pairs of
numbers.
In order to get a sum of 7, the numbers must be 1 + 6 or 2 + 5 or 3 + 4. Each possibility
can occur in two ways, so there are 6 ways a 7 can be rolled. This gives a probability of
6/36 = 1/6 = .16 for rolling a 7.
Rolling an 11 is less frequent: it only comes about as 5 + 6, which can happen in 2 ways.
The probability of throwing an 11, therefore, is 2/36 = 1/18 = .05.
Thus, the probability of rolling either a 7 or an 11 is 8/36 = 2/9 = .2.

z EXAMPLE 4.4 - 5

Given a standard 52-card deck (four suits with 13 different kinds of cards), which five-card
hand has a higher probability: a full house (three of one kind, two of another) or a flush
(five in the same suit)?

Solution
- Our sample space here consists of all possible 5-card hands.

There are

(

52
5

)

=
52!

5! 47!
= 2, 598, 960 hands in all.

- The number of ways to get a full house is calculated by multiplying the number of ways to
choose one kind times the number of ways to get three of this kind times the number of
ways to choose a second kind times the number of ways to get two of this other kind.

This number is 13 ·

(

4
3

)

· 12 ·

(

4
2

)

= 156 · 4 · 6 = 3744.

(Note: the product

(

13
2

)

·

(

4
3

)

·

(

4
2

)

is off by a factor of 2 because it doesn’t take into

account which face-value is three of a kind and which one is two of a kind.)
- A flush can be generated by first choosing a suit and then choosing 5 cards from that suit.

The number of ways in which this can occur is thus 4 ·

(

13
5

)

= 4 · 1287 = 5148.

- Thus, a flush is slightly more likely than a full house: its probability is 5148/2, 598, 960 ≈
.00198, compared with the probability of 3744/2, 598, 960≈ .00144 for a full house. A flush
is likely to occur about 54 more times than a full house in 100,000 hands.
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Unordered Choice with Repetition

The most complex combinatorial situation is that of counting the number of unordered
samples when repetition is allowed. The difficulty arises here in part because such samples no
longer correspond to subsets of a sample space, since sets cannot represent an element’s being
present multiple times. Furthermore, while we could begin the counting process like we did
above using ordered samples, there is no constant that we can divide by in order to cancel out
duplication. It turns out we need a whole new way to think about this situation if we are to
come up with a fruitful method for counting the possibilities. Let’s look at an easy example to
illustrate these problems and get some idea about how to proceed.

z EXAMPLE 4.4 - 6

Consider a sample space S with three elements to draw from, say S = {a, b, c}. Determine
how many samples of size two there are, if repetition is allowed.

Solution
The numbers involved in this problem are small enough so we can list all the samples.
We’ll write <x, y> to indicate that x and y are the members of the sample. Order isn’t
important, so <y, x> is the same sample as <x, y>, but we don’t require that x 6= y.
Here is the list: <a, a>, <a, b>, <a, c>, <b, b>, <b, c>, <c, c>; 6 samples in all.
Now, we could have started out with all ordered pairs; that allows for repeated elements.
There are 32 = 9 ordered pairs here. However, there is no fixed duplication number to
divide this total by. The ordered pairs (a, b) and (b, a), for example, count toward one
sample <a, b>, so we should divide this part of the count by 2; but we can’t divide by 2
in general, because (a, a) is present only once and has to be counted as one input.
We really need a gestalt shift to count these samples more easily. Instead of focusing on
the two spots in the sample that we want to fill in with a letter, let’s concentrate on the
three letters that can be chosen. And, rather than put the letters into the sample, we’ll
distribute two winning tags among the letters a, b, and c to indicate how many times, if
any, they’ve been chosen to be in the sample.
Using three separated blanks | | to stand for the three letters in order, we need
to count the number of ways we can assign two winning tags. If we use ∗ for our choice
symbol, the sample <a, b> would be represented by ∗ | ∗ | and the sample <c, c> by

| | ∗ ∗ . The blanks can obviously be ignored; the essential thing is the location of the
stars relative to the separators. So we can represent these samples by ∗ | ∗ | and | | ∗ ∗ .
The new question we want answered, therefore, is this: how many ordered 4-sequences of
| ’s and ∗’s are there that contain two stars? This is precisely the number of ways we can

choose two positions in a 4-sequence for the two ∗’s: in

(

4
2

)

= 6 ways.

The following proposition and its proof generalizes the last example and gives us a formula.
However, knowing and being able to apply the method of the proof is more important than
memorizing the formula.

PROPOSITION 4.4 - 2: Counting Unordered Samples with Repetition
The total number of unordered samples of size k, allowing repetition, that can be drawn

from a sample space of size n is

(

k + (n − 1)
k

)

=
n · (n + 1) · · ·(n + (k − 1))

1 · 2 · · · k
.

Proof :

Create n compartments in some definite order to represent the n elements of the sample
space, and separate them by n − 1 strokes.
Distribute k ∗’s to these n compartments in some way to represent choosing the elements.
This generates sequences with n − 1 strokes and k ∗’s.
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The number of different ways that this can be done is

(

k + (n − 1)
k

)

. Expanding this

expression and canceling the common terms (n − 1)! gives the final fraction.

Note the nice way in which the various ideas we’ve been studying come together in this
proof. We wanted to count the number of unordered samples containing so many things,
allowing repetitions. We did this by first forming ordered sequences to represent the process.
Then, in order to count the sequences we were interested in, we counted combinations of so
many positions within the sequence, without concern for the order in which they were chosen.

Note also that the fractional formulas for counting unordered samples, with or without
repetition, have a rather satisfying symmetry about them. Both types of unordered samples
have k ! in the denominator. For combinations without repetition, the numerator has k factors,
starting with n and counting down. For combinations with repetition, the numerator also has
k factors, but this time starting with n and counting up.

z EXAMPLE 4.4 - 7

A doting grandmother wants to give a total of 20 five-dollar bills to her four young grand-
children. In how many different ways can this dear lady distribute the money?

Solution
We can model this the way we counted unordered samples with repetition.
Think of four compartments, one for each child, each of which can receive any number of
five-dollar bills from 0 to 20, until all 20 of them have been distributed.
This can be symbolized by a 23-sequence containing 3 compartment-separator symbols and
20 five-dollar symbols.

There are

(

23
20

)

=

(

23
3

)

=
23 · 22 · 21

1 · 2 · 3
= 1771 ways to do this.

Of course, if she doesn’t want to be accused of favoritism, she’d better give them each $25.

z EXAMPLE 4.4 - 8

An ordered partition of a finite number N is a decomposition of the number N into p natural
numbers x1, . . . , xp in order such that x1 + · · ·+ xp = N .

a) In how many ways can N = 4 be decomposed into an ordered sum of two natural
numbers? What if order isn’t important?

b) In how many ways can a number N be decomposed into an ordered sum of p natural
numbers? What if order isn’t important?

Solution

a) We can decompose 4 into an ordered sum of two natural numbers in the following five
ways: as 0 + 4, 1 + 3, 2 + 2, 3 + 1, and 4 + 0.
More systematically, we can solve x1 + x2 = 4 for solution-pairs (x1, x2), using the
following reasoning. Distribute four units (the quantity to be partitioned) to two com-
partments that represent the two variables.

Using the last proposition, there are

(

4 + 1
4

)

= 5 ways to do this.

If unordered sums are used, so that for instance 0+4 and 4+0 are essentially the same,
there are only 3 partitions.

b) Now we generalize. To decompose N into a sum of p terms, think of distributing N
units (say, ∗’s) into p compartments (one for each term) with p − 1 separators.
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This yields certain sequences of length N + (p − 1) ones in which N locations have
been chosen for the units from among the total N + (p − 1) positions. There are
(

N + (p − 1)
N

)

of these.

If order of the summands isn’t important, the problem is more difficult. I don’t know of a
simple formula for the number of unordered partitions of a number N into p summands,
though there may be one. (Research project, anyone?)

EXERCISE SET 4.4

*1. Creating a Counting Chart
Create a 2 × 2 chart, giving the counting formulas for all of the various situations we’ve encountered:
ordered vs. unordered, repetition allowed vs. repetition not allowed.

Problems 2 - 10: Counting Events and Possibilities

Use the methods of this section to work the following exercises.

2. Diagonals in a Polygon

a. How many diagonals can be drawn in a convex pentagon (a 5-sided figure with no indentations)?

b. How many diagonals can be drawn in a convex polygon of n sides?

*3. Polite Handshakes

*a. At a party of 15 people, everyone shook hands with everyone else. How many handshakes took place?

b. Find a formula for the number of handshakes if n people were present at the party and each person
shook hands with everyone else.

*4. A Discrete Mathematics class of 18 students has 7 women in it. If 3 students are picked each period to
exhibit their homework solutions on the board, how many different groups are possible that contain:

*a. Any number of women, from 0 to 3.

*b. Exactly 1 woman.

c. 3 women.

*d. No more than 1 woman.

*5. Paths in a Grid

*a. How many different paths can be drawn along an integer grid to go from the origin (0, 0) to the point
(2, 3) if one is only allowed to go either up or right at each integer lattice point? How many paths
are there from the origin to the point (m, n)? Explain.

b. How many different ways are there to pass from the triple (0, 0, 0) to the point (3, 4, 5) if you can only
increase one coordinate at a time by adding 1 to it? Explain.

*6. Sara makes a donut-run for her staff every morning. She always buys a dozen donuts, choosing from five
different types of donuts.

*a. If there are no restrictions on what she should buy, how many different donut-dozens are possible?

*b. If she always gets at least one of each type of donut, how many different donut-dozens are possible?

EC 7. Depleting the Piggy Bank

a. If 5 coins are taken from a piggy bank containing many pennies, nickels, dimes, and quarters, how
many different collections of (types of) coins are possible?

b. How many different total amounts of money (the total value of the coins) are possible? Explain.

4.4 -7



8. An office mailroom has 15 mailboxes for its employees. In how many different ways can 22 pieces of mail
be distributed to these mailboxes? Explain.

*9. A committee of 5 members is seated in a circle around a table.

*a. How many essentially different arrangements of the members are possible if there are 5 chairs? if
there are 6 chairs and 1 remains empty? if there are 7 chairs and 2 remain empty?

*b. Calculate the number of essentially different arrangements for part a if relative location among the
members and empty places (rather than which chair each occupies) is all that counts.

c. If the orientation of the circle is unimportant, what would your answer to part b be?

*10. In how many distinct arrangements can you put the letters from the word MISSISSIPPI? Explain your
reasoning.

Problems 11 - 12: True or False

Are the following statements true or false? Explain your answer.

*11. For all n and k, C(n, k) ≤ P (n, k).

12. For all k ≤ n,

(

n
n − k

)

=

(

n
k

)

.

Problems 13 - 14: Counting for Games

The following problems ask you to count pieces in games.

*13. Dominoes
A domino from a set of Double-Twelve Dominoes is a flat rectangular piece whose face is divided in
half, each part containing between 0 and 12 dots on it in a recognizable pattern. If there is exactly one
domino for each possible pair of numbers, how many dominoes are there in a full set? Explain.

EC 14. A tri-omino is a flat triangular piece having a number from 0 through 5 placed in each corner.

a. If a set of tri-ominoes has all possible configurations of the numbers, oriented clockwise in order of
increasing (non-decreasing) size, how many pieces are needed for a full set?

b. How many pieces would be needed if tri-ominoes were oriented in any way, clockwise or counter-
clockwise?

Problems 15 - 17: Counting and Probability

The following problems involve counting and discrete probability.

*15. How many 5-card hands from a standard deck of 52 cards contain the following.

a. One pair (two cards of the same kind plus three cards of different kinds from the pair and from one
another).

*b. Two pairs (two of one kind plus two of another kind plus one card of a third kind).

*c. A straight (a run of five consecutive values in any suits, where the non-numerical face cards are
ordered after the ten as jack, queen, king, and ace).

*d. Determine the probabilities associated with each of the above hands and compare them to one another
and the probabilities calculated in Example 5.

16. An urn contains 5 red balls, 8 white balls, and 10 blue ones.

a. How many different sets of 3 red, 3 white, and 3 blue balls can be taken out of the urn?

b. What is the probability of drawing 3 of each color if 9 balls are drawn from the urn?

17. Yahtzee is a game played by two or more players each rolling 5 dice in turn, with two chances to re-roll
some or all of the dice in order to try to get a score in 1 of 13 different categories.

a. What it is the probability of rolling a full house (three of one kind, two of another) in one toss?

b. What is the probability of rolling a small straight (four numbers in a row) on one toss?

c. What is the probability of rolling a large straight (five numbers in a row) on one toss?

d. What is the probability of rolling a Yahtzee (all five numbers the same) on one toss?

e. If a player rolls three 5’s, a 2, and a 3, what is her probability of getting a Yahtzee on her next two
rolls if she decides to keep the 5’s and roll the other two dice again?
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Problems 18 - 25: Pascal's Triangle

The following problems explore some of the many patterns that have been discovered in Pascal’s Triangle.

*18. Using the factorial formula for the binomial coefficients involved, prove the basic recursion formula on

which Pascal’s triangle depends:

(

n − 1
k − 1

)

+

(

n − 1
k

)

=

(

n
k

)

. Explain why this formula is basic to

generating the triangle of coefficients.

EC 19. Prove that

(

n − 1
k − 1

)

+

(

n − 1
k

)

=

(

n
k

)

, this time using the fact that

(

n
k

)

is the number of subsets

of size k in a set S of size n. Hint : pick some element of S and partition the collection of subsets into
two classes, depending on whether the element is in the subset or not.

20. Prove the Binomial Expansion Theorem rigorously using mathematical induction. Make use of Problem
18 where appropriate.

*21. Example 2 establishes that

n
∑

k=0

(

n
k

)

= 2n. What is

n
∑

k=0

(−1)k

(

n
k

)

? Prove your result using a binomial

expansion.

22. Show that

(

2n
n

)

=

n
∑

k=0

(

n
k

)2

when n = 3 by direct calculation. Then show via the recursive formula

in Problem 18 how this formula comes about: trace the value of

(

6
3

)

back up Pascal’s triangle until

you reach the sides of the triangle (row n = 3).

EC 23. Prove the general result stated in Problem 22.

24. Identify the pattern of the following result and check it using Pascal’s Triangle when n = 6. Then prove

in general that

n
∑

k=1

(

k
1

)

=

(

n + 1
2

)

.

25. Patterns like the one in Problem 24 exist elsewhere in Pascal’s Triangle. Find another one, formulate it
as a proposition, and prove it.
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HINTS TO STARRED EXERCISES 4.4

1. The formulas needed are all in the text.

3. a. Each handshake involves 2 people out of the group of 15.

4. a. This can be worked in more than one way. The simplest is to note that every exhibition group will
have between 0 and 3 women in it.

b. An exhibition group with 1 woman will also contain 2 men.

d. Calculate two separate values (no women, one woman) and combine them.

5. a. How many times must you go right (R), and how many times must you go up (U)? Put R’s and U’s
together in a map instruction string and count the possibilities.

6. a. Make donut compartments and indicate your 12 choices with a ∗ or a 0.

b. Use the same model as in part a, only take care of the requirement before counting.

9. a. This is a permutation problem.

b. Divide your answers in part a by the duplication possible.

10. Start with a permutation and then divide out by the duplication introduced by the letters I, S, and P.

11. [No hint.]

13. You need to choose 2 numbers from 0 –12, allowing repetition but ignoring order.

15. See Example 5.

18. This is straight-forward algebra of fractions involving factorials.

21. Relate this to an expansion of (a + b)n for b = −1 and an appropriate value of a.



4.5 Additive Counting Principles

The part of combinatorics we have focused on so far involve counting principles that are
built upon the basic Multiplicative Counting Principle. These principles derive ultimately from
Proposition 4.3.1: the cardinality of a Cartesian product is the product of its cardinalities.

This section will look at an additive counting situation and its set-theoretic background.
In its most basic form, we will count the number of elements in the union of two sets; here the
Additive Counting Principle will provide the necessary foundation. This is a simpler counting
situation than what we looked at earlier, but we had to wait until now to present it because
its most general formulation requires a knowledge of how to count combinations.

Cardinality of Finite Sets and Unions

The number of elements in two finite sets taken together can be found by counting. If the
sets overlap, the common elements should be counted only once. Otherwise, the total can be
found by adding the two cardinalities: simple addition handles exclusive alternatives.

In a rigorous development of Set Theory, the following principle would be taken as the
general definition for adding cardinal numbers. Here we will postulate it as an axiom stipulating
how the cardinality of a disjoint union of finite sets is determined. The Additive Counting
Principle follows immediately out of this.

AXIOM 4.5 - 1: Cardinality of Disjoint Unions
If S and T are disjoint finite sets, |S ∪ T | = |S|+ |T | .

PROPOSITION 4.5 - 1: Additive Counting Principle
If an outcome can occur in one of two mutually exclusive ways, the first in m ways and the
second in n ways, then the number of ways the outcome can occur in either way is m + n.

Now, what if the sets are not disjoint but overlap? Then adding cardinalities counts the
common part twice, so it must be subtracted once to compensate. This method of counting is
justified by applying the above results.

U

S T

PROPOSITION 4.5 - 2: Cardinality of Unions
|S ∪ T | = |S| + |T | − |S ∩ T | .

Proof :

We’ll break S ∪ T into two disjoint parts and
use that to relate their cardinalities.

S ∪ T = S ∪ (T − S)

Therefore, since these sets are disjoint,

|S ∪ T | = |S ∪ (T − S)|

= |S|+ |T − S| .

Similarly, we have |T | = |T − S| + |S ∩ T |.

Thus, |T − S| = |T | − |S ∩ T |.

Substituting this value in the equation above, we have |S ∪ T | = |S|+ |T | − |S ∩ T | .

COROLLARY : Generalized Additive Counting Principle
If an outcome can occur in one of two ways, the first in m ways and the second in n ways,
then the number of ways it can occur in either way is m + n − b, where b is the number of
outcomes that occur in both ways.
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z EXAMPLE 4.5 - 1

The department secretary sent out an email to all mathematics and computer science
majors. There are 19 mathematics majors and 28 computer science majors, yet the email
only went out to 43 students in all. Explain how this happened.

E

C M

28 19

Solution
Let C represent those students having a computer sci-
ence major and M those majoring in mathematics.
Then |C|+ |M | = 28 + 19 = 47.
Since |C ∪ M | = 43, |C ∩ M | = 47 − 43 = 4.
Thus, four students must be double-majoring in math-
ematics and computer science.

Principle of Inclusion and Exclusion for Three Sets

Working with two sets isn’t difficult and doesn’t really need any fancy principles: you just
draw a diagram and use your common sense for doing some simple arithmetic. But when more
sets are involved, things begin to get complicated. We’ll first focus on the situation where there
are three sets; this case can still be illustrated and worked using a standard Venn diagram.

If the sets are pairwise disjoint so that no two of them overlap, it’s easy to count their
union: take the individual cardinalities and add them up. This is a straight-forward extension
of the Additive Counting Principle, and it applies to any number of sets. In fact, this extension
is more or less the basis for how we will treat the more complex situation; breaking the sets
up into pairwise disjoint components we can determine the cardinality of any one of them by
knowing that of the others.

z EXAMPLE 4.5 - 2

An upper-level general education (GE) class has 71 students enrolled. Of these students,
37 are men, 57 are taking it for GE credit and the rest are taking it as an elective, 49 are
seniors, 7 men are taking it as elective, 23 men are seniors, 40 seniors are taking it for GE
credit, and 21 senior women are taking it for GE credit. How many non-senior women are
taking it as an elective?

C

M G
3 11 6

2 19
4 21

5

S

Solution
The diagram below shows the final result for the class C; it would be good to take a blank
diagram and fill in the numbers step by step. The sets M , G, and S represent respectively
men in the course, students taking the course for GE credit, and seniors in the course.
Start with the fact that 21 senior women are tak-
ing the course for GE credit: that enumerates a
single inner component. Since 40 seniors are tak-
ing it for GE credit, 19 must be men. This means
4 senior men are taking it as an elective and 3 non-
seniors. Therefore, 11 non-senior men are taking
it for GE credit. This leaves 6 non-senior women
taking it for GE credit. Since 49 seniors are in the
class, there must be 5 senior women taking it as
an elective. In a class of 71 students, that leaves
only 2 non-senior women taking it as an elective.

Now consider any three finite sets S1, S2, and S3. How is the cardinality of the union
S1 ∪ S2 ∪ S3 related to the various parts? If we add up the members in each set, we’ve then
counted the members in the intersections S1 ∩ S2, S1 ∩ S3, and S2 ∩ S3 twice, so we should
subtract those numbers once from the total. But wait: we’ve actually counted the members of
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S1 ∩ S2 ∩ S3 three times, once for each set. So if we subtract off the numbers for each double
intersection, we will now have subtracted off the number in the triple intersection three times,
so it won’t have been counted at all. Well, then, we’d better add that back in. In symbols we
have:

|S1 ∪ S2 ∪ S3| = (|S1| + |S2| + |S3|) − (|S1 ∩ S2| + |S1 ∩ S3| + |S2 ∩ S3|) + |S1 ∩ S2 ∩ S3|

In words: the cardinality of a triple union is the sum of the cardinalities of the individual sets
minus the sum of the cardinalities of the double intersections plus the cardinality of the triple
intersection.

This is a special case (for three sets) of the more general Principle of Inclusion and Ex-
clusion, which we’ll formulate and prove shortly. But first let’s take another look at the last
example.

z EXAMPLE 4.5 - 3

Rework Example 2, using the formula just developed. Comment on its efficiency.

Solution
The quantity we’re interested in is |M ∪ G ∪ S| .
Since (M ∪ G ∪ S) ⊆ C, |M ∪ G ∪ S| = |C| − |M ∪ G ∪ S| . [See Exercise 11]
By the above formula,

|M ∪ G ∪ S| = (|M | + |G| + |S|)− (|M ∩ G| + |M ∩ S| + |G ∩ S|) + |M ∩ G ∩ S|

= (37 + 57 + 49)− (|M ∩ G| + 23 + 40) + |M ∩ G ∩ S|

Since 7 = |M − (M ∩ G)| = |M | − |M ∩ G| = 37 − |M ∩ G|, we have |M ∩ G| = 30.
And since |G ∩ S − M ∩ G ∩ S| = 21, |M ∩ G ∩ S| = 19.

Substituting these two new values in the above equation, we get

|M ∪ G ∪ S| = (37 + 57 + 49)− (30 + 23 + 40) + 19

= 143 − 93 + 19

= 69

Thus, |M ∪ G ∪ S| = 71 − 69 = 2.

It’s not really any faster to use the given formula for three sets unless the sets whose
cardinalities we know are the ones appearing in the formula. Otherwise cardinalities need
to be determined using other relations that may still best be figured out by looking at the
diagram, as we did in Example 2. However, the formula does give us a systematic way to
work these sorts of problems, one that can be generalized to situations where we can no
longer diagram very easily what’s going on.

Principle of Inclusion and Exclusion in General

Suppose we have any number of sets and we want to count the total number of elements
in their union. How can we do this in terms of its component subsets? If we have pairwise
disjoint components, the total is found by simple addition of the individual cardinalities. But
if we don’t, we have somehow to account for the duplication involved, subtracting and adding
various values to arrive at the correct count. How to do this in terms of all possible intersections
is the content of the Principle of Inclusion and Exclusion. It generalizes the method we just
illustrated for three sets. This result is best stated largely in words since a fully symbolic
formulation would be messy.
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THEOREM 4.5 - 1: Principle of Inclusion and Exclusion
Let S1, S2, . . . , Sn be a collection of n sets. |S1∪S2∪· · ·∪Sn| is the sum of the cardinalities
of all possible odd-fold intersections Sk1

∩ · · ·∩ Sko
minus the sum of the cardinalities of all

possible even-fold intersections Sk1
∩ · · · ∩ Ske

.

Proof :

Our proof strategy is to show that in the end the given formula counts each element of the
total union exactly once.
To do this, we begin with a simple but potent observation: each element of the total union
belongs to exactly m sets of the collection (namely, all the sets to which it belongs) for
some unique m, 1 ≤ m ≤ n.

So, let x be an arbitrary element of the union, and let m denote the number of sets in the
collection to which it belongs.

As a warm-up to determining how many times the formula counts x, note that in adding
up the cardinalities for all the individual sets (the 1-fold intersections), the formula counts

x a total of

(

m
1

)

= m times, once for each set it’s in.

Let’s do one more situation and then generalize. In subtracting off the cardinalities for all

two-fold intersections in the formula, we will have counted x (negatively) a total of

(

m
2

)

times since this is the number of two-fold intersections x belongs to.

In general, then, for each k, 1 ≤ k ≤ m, the formula counts x a total of

(

m
k

)

times

since this is the number of k-fold intersections x is in— either adding it in (for odd k) or
subtracting it off (for even k). The parts of the formula that involve intersections of more
than m sets are irrelevant to x; they won’t count x at all.

Thus x gets counted a total of

(

m
1

)

−

(

m
2

)

+ · · ·+ (−1)k+1

(

m
k

)

+ · · ·+ (−1)m+1

(

m
m

)

times. We need to evaluate this alternating series to show that this is 1, as it should be.

This is best seen by cleverly expanding (1 + −1)m using the Binomial Expansion Theorem
(see Exercise 4.4-21):

0 = (1 + −1)m =
m

∑

k=0

(

m
k

)

1m−k(−1)k =

(

m
0

)

−

(

m
1

)

+ · · ·+ (−1)m

(

m
m

)

.

Solving this for our desired sum, we have

(

m
1

)

−

(

m
2

)

+ · · ·+(−1)m+1

(

m
m

)

=

(

m
0

)

= 1.

Thus our formula counts each x in the union exactly once, just as it should.

COROLLARY : Principle of Inclusion and Exclusion (Complementary Form)
Let S1, S2, . . . , Sn be a collection of n subsets of a set S. Then |S1 ∪ S2 ∪ · · · ∪ Sn| =
|S| − |S1 ∪ S2 ∪ · · · ∪ Sn|, which is |S| plus the sum of the cardinalities of all possible even-
fold intersections Sk1

∩ · · · ∩ Ske
minus the sum of the cardinalities of all possible odd-fold

intersections Sk1
∩ · · · ∩ Sko

.

Proof :

This follows immediately from the rule for calculating cardinalities of complements (see
Exercise 11) and the Principle of Inclusion and Exclusion .

z EXAMPLE 4.5 - 4

How many positive integers less than or equal to 360 are relatively prime to 360 (i.e., have
no factors besides 1 in common with 360)?

4.5 -4



Solution
We’ll first factor: 360 = 23325. So we must find the number of positive integers that have
no factor of 2, 3, or 5.
Let S2 be the set of all multiples of 2 less than or equal to 360,

S3 be the set of all multiples of 3 less than or equal to 360,
S5 be the set of all multiples of 5 less than or equal to 360,

and let S1 = {n : n ≤ 360}.
We must find |S1 − (S2 ∪ S3 ∪ S5)| = |S1| − |(S2 ∪ S3 ∪ S5)|.
|S1| = 360, |S2| = 360/2 = 180, |S3| = 360/3 = 120, and |S5| = 360/5 = 72.
Also, |S2 ∩ S3| = 360/6 = 60, |S2 ∩ S5| = 360/10 = 36, and |S3 ∩ S5| = 360/15 = 24 .
Finally, |(S2 ∩ S3 ∩ S5)| = 360/30 = 12.
Using the Principle of Inclusion and Exclusion ,
|(S2 ∪ S3 ∪ S5)| = (|S2|+|S3|+|S5|) − (|S2 ∩ S3|+|S2 ∩ S5|+|S3 ∩ S5|) + |(S2 ∩ S3 ∩ S5)|

= (180 + 120 + 72) − (60 + 36 + 24) + 12

= 372− 120 + 12 = 264
Thus, there are 360 − 264 = 96 numbers less than or equal to and relatively prime to 360.

EXERCISE SET 4.5

Problems 1 - 8: Counting Sets

Work the following problems, using either a Venn diagram or the Principle of Inclusion and Exclusion to

assist you as needed.

*1. Card Hands

*a. How many five-card hands contain three aces? two kings? three aces and two kings? three aces or
two kings?

b. How many five-card hands are three of a kind? two of a kind? a full house (three of one kind plus
two of another)? three of a kind or two of a kind?

c. How many five-card hands are a flush (five non-consecutive cards in the same suit)? How many hands
are a straight flush (five consecutive cards in the same suit, Ace being either high or low)? How many
hands are a straight (five consecutive cards in any suits)? How many hands are a flush, a straight
flush, or a straight?

*2. There are 150 faculty at a technical community college: 100 faculty are full-time; 60 faculty are women,
but only 25 of these are full-time; 40 faculty teach a liberal arts course, of which 30 are women and
20 are full-time; and 10 full-time women faculty teach a liberal arts course. How many full-time men
faculty do not teach a liberal arts course? How many part-time men faculty does the college employ?
Explain your reasoning.

3. A bowl of fruit contains 4 bananas, 5 apples, and 6 oranges.

a. In how many different ways can three pieces of fruit be chosen so that all three fruit are the same?

b. In how many different ways can three pieces of fruit be chosen so that at least two fruits are the
same?

4. A one-room school house contains 20 children. Of these students, 14 have brown eyes, 15 have dark hair,
17 weigh more than 80 pounds, and 18 are over four feet tall. Show that at least 4 children have all four
features.

*5. Counting Primes

Using the Principle of Inclusion and Exclusion, Complementary Form, determine how many primes
there are in the first 100 integers.
Hint : Every number is either prime or the multiple of a prime number that is less than or equal to the
number’s square root (why?).
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*6. Binary Events

*a. How many different bytes (eight-bit strings; see Example 4.3-3) do not contain 5 consecutive 1’s?

*b. A coin is flipped 8 times. What is the probability of having the coin land heads up 4 or less times in
a row? Assume that heads and tails are equally likely to occur for each toss.

*7. A loose-change jar contains 62 coins: 31 pennies, 10 nickels, 12 dimes, and 9 quarters. In answering the
following questions, do not distinguish between collections that have the same number of coins of the
same type and assume that each coin is as likely as the next to be chosen.

*a. How many different collections of 7 coins can be drawn out of this jar?

b. How many different collections of 7 coins can be drawn out having at least one coin of each type?
What is the probability of withdrawing such a collection?

*c. How many different collections of 7 coins have 2 quarters or 2 dimes? 2 quarters, 2 dimes, or 2 nickels?

EC *d. What are the probabilities associated with choosing the collections in part c?

8. Illustrating the Principle of Inclusion and Exclusion

a. Write out the full formula for |S1 ∪ S2 ∪ S3 ∪ S4|.

b. Write out the full formula for |S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5| if all 4-fold intersections are empty.

Problems 9 - 10: True or False

Are the following statements true or false? Explain your answer.

9. The cardinality of the union of two sets is the sum of the set’s cardinalities.

*10. If a first action can be performed in m ways and for each of these a second different action can be
performed in n ways, the joint action can be performed in m + n ways.

Problems 11 - 17: Cardinality and Subsets

Suppose all the sets below are finite sets. Prove the following without using the Principle of Inclusion and

Exclusion or its Corollary.

*11. S ⊆ U → |S| = |U−S| = |U |−|S| [This can be used as the definition of subtraction in a development
of set-theoretic arithmetic.]

*12. Find and prove a general formula for |S − T |, regardless of how S and T are related.

13. |S ∪ T | = |S − T |+ |S ∩ T | + |T − S|

14. S ⊆ U → |S| ≤ |U | [Cardinality is monotone increasing.]

15. |S ∩ T | ≤ |S| ≤ |S ∪ T |

16. For a finite collection of sets, which number is smaller: the sum of the cardinalities of each set, or the
cardinality of its union? Formulate a precise answer symbolically and then prove it.

*17. Suppose
{

Si

}n

i=1
forms a partition of a set S. Prove by induction that |S| =

n
∑

i=1

|Si| .

Problems 18 - 31: Exploring Euler's Phi-Function

Use the Principle of Inclusion and Exclusion to help answer the following questions about Euler’s φ-function,

where φ(n) equals the number of positive integers less than or equal to n that are relatively prime to n (have
no factors besides 1 in common with n).

*18. Determine φ(21), the number of positive integers relatively prime to 21. How is φ(21) related to the
factors of 21?

19. Determine a formula for φ(pq), where p and q are distinct primes. Put your formula in factored form,
and prove your result. Does your formula hold if p and q are the same prime number? Does it hold if
the numbers themselves are relatively prime?

*20. Determine φ(25). Relate this value to the prime factor of 25. Find a formula for φ(p2), where p is a
prime. Prove your result.
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*21. Determine φ(105). Relate this number to the prime factors of 105.

EC 22. Determine a formula for φ(pqr), where p, q, and r are distinct primes. How is this expression related
to the factors of pqr? Does your formula hold if the number is p3 instead of pqr? If it is p2q? If the
numbers p, q, and r are relatively prime to one another? Justify your answers.

23. Determine φ(27). Relate this value to the prime factor of 27. Find a formula for φ(p3), where p is a
prime. Prove your result.

24. Determine φ(546) using the Principle of Inclusion and Exclusion. How is this value related to the prime
factors of 546?

25. State and prove a formula for φ(pqrs), where p, q, r, and s are distinct primes. Use the Principle of

Inclusion and Exclusion.

EC 26. Generalize the results of Problems 19, 22, and 25 to obtain a formula for φ(p1 · · ·pn) for the product of
n distinct prime numbers pi.

EC 27. Determine and prove a formula for φ(pk), where p a prime number and k a positive integer.

28. Use the Principle of Inclusion and Exclusion to develop a formula for φ(pmqn) for distinct primes p
and q. Take m = 2 and n = 3 for a case study if this helps. Prove that φ(pmqn) = φ(pm)φ(qn) =
pm−1qn−1(p − 1)(q − 1). Does this formula still work if m = 1 = n?

EC 29. Generalize the results of Problems 26 – 28 to develop a formula for φ(m) for any positive integer m whose

prime factorization is m = pk1

1
· · · pkn

n .

EC 30. Given your formula from Problem 29, show that φ(m) = m ·
∏

p|m

(1 − 1/p) , where p is any prime divisor
of m.

31. Use your work from Problems 28 and 29 to show that φ(ab) = φ(a)φ(b) if a and b are relatively prime.

32. The Babylonians had a sexagesimal (a base sixty place-value) numeration system. This has some definite
advantages for expressing fractions as a whole number of a smaller unit (sixtieths, thirty-six hundredths,
etc); think of minutes and seconds of an hour or an angle, which are based on this system.

a. How many fractions 1/n with n ≤ 3600 can be so expressed?
Recall : 1/n can be expressed as some fraction k/3600 iff n’s prime factors are all among 3600’s prime
factors (why?). Thus, 1/8 can be so expressed (as 450/3600), while 1/14 can’t because 14 has a prime
factor (7) that 3600 doesn’t.

b. How many proper fractions m/n, m < n can be so expressed? (For this part, count 1/2 as different
from 30/60.)

c. How many distinct proper fractional values m/n can be so expressed (i.e., m/n is in reduced form;
now count 1/2 as the same as 30/60)?
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HINTS TO STARRED EXERCISES 4.5

1. a. To find the number of hands with 3 aces or 2 kings, treat it as the cardinality |A3 ∪ K2|.

2. See Example 2.

5. For each prime less than or equal to
√

100, find the number of its composite (non-prime) multiples less
than or equal to 100. Then use the Principle of Inclusion and Exclusion to find the total number of
composite numbers less than or equal to 100. Keep in mind that 1 is not prime.

6. a. One approach you can use is to find the number of bytes with exactly 8 consecutive 1s, with exactly 7
consecutive 1s, exactly 6, and exactly 5. Then subtract this amount from the total number of bytes.

b. Use your work from part a.

7. a. Since there are at least 7 of each type of coin, this problem can be solved by making four compartments
for the different coin types and assigning 7 ∗’s to the compartments.

c. To count the possibilities, use the method of part a along with the Principle of Inclusion and Exclusion

to determine how many different collections have the required properties.

d. To determine the probabilities of the collections, you can’t just take the calculated number of col-
lections of that type and divide by the total number of collection types, since some collections are
more probable than others (7-penny collections are much more likely than 7-quarter collections, for
instance); here you need to distinguish individual coins to account for their frequency. Thus, for
example, there are

(

9

2

)

·
(

60

5

)

different collections of 7 coins having exactly 2 quarters in them out of

a total of
(

62

7

)

equally likely 7-coin collections.

10. [No hint.]

11. Start by letting |U | = u and |S| = s. You’ll need to use Axiom 1 in your proof.

12. Draw a Venn diagram to help you find the formula to prove. In your proof, note that S − T and S ∩ T

form a partition of S (explain why in your proof). You’ll also need to use Axiom 1.

17. Prove this by induction, using Axiom 1 where it is relevant.

18. φ(21) = 12. When figuring out the relation between φ(21) and the factors of 21, make use of Proposi-
tion 2.

20. The formula you need to prove is φ(p2) = p2 − p.

21. If the prime factorization of a number is pqr, then there are qr multiples of p, pr multiples of q, and pq

multiples of r less than or equal to pqr. Keeping this fact in mind, make use of the Principle of Inclusion

and Exclusion.
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