3-1997

Effects of Keyboarding Skills on the Quality of Writing Using a Word Processor for Composing

Jon S. Kroeze

Follow this and additional works at: http://digitalcollections.dordt.edu/med_theses

Part of the Curriculum and Instruction Commons

Recommended Citation

This Thesis is brought to you for free and open access by Digital Collections @ Dordt. It has been accepted for inclusion in Master of Education Program Theses by an authorized administrator of Digital Collections @ Dordt. For more information, please contact ingrid.mulder@dordt.edu.
Effects of Keyboarding Skills on the Quality of Writing Using a Word Processor for Composing

Abstract
This study investigated the influence of keyboarding proficiency on writing quality. The participants were seventeen fifth graders in a small private school. One sample group participated in formal keyboarding instruction for seven weeks. The other sample group used the computers for the same seven week period but with other programs not related to improving keyboarding proficiency. Keyboarding tests were taken as a pre-test and post-test. Writing samples were taken as a pre-test and post-test and scored holistically. An analysis of the keyboarding pre-test and post-tests suggested that a significant improvement in keyboarding skills had developed for the group given formal keyboarding instruction. However, in analyzing the writing samples, the results suggest equal improvement in writing quality for both the keyboarding and control group.

Document Type
Thesis

Degree Name
Master of Education (MEd)

Department
Graduate Education

First Advisor
Barbara Fennema

Second Advisor
Dennis Vander Plaats

Keywords
Master of Education, thesis, Christian education, elementary education, middle school students, fifth graders, keyboarding, writing

Subject Categories
Curriculum and Instruction | Education

Comments
Action Research Report Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Education

This thesis is available at Digital Collections @ Dordt: http://digitalcollections.dordt.edu/med_theses/56
The Effects of Keyboarding Skills on the Quality of Writing Using a Word Processor for Composing

by

Jon S. Kroeze

Approved:

Barbara Fiserema Date: 3/26/97
Faculty Advisor

Owen M. Hunt Date: 3/26/97
Faculty Committee Member

Approved:

Jack J. Jemmem Ed.D
Director of Graduate Education

March 26, 1997
Date
Acknowledgments

I would like to acknowledge professor Barb Fennema for her assistance as my faculty research advisor. I would also like to thank professor Ken Bussema for teaching me the research process and for assisting in the statistical analysis.

Thank you to my writing evaluators Kim Hengeveld, Gail Andringa, and Laura Verdoorn. Your time and expertise were appreciated.

Finally, thank you to the administration, board, and staff at Sheldon Christian School for their support and encouragement during this process of working toward my Master's Degree.
Abstract

This study investigated the influence of keyboarding proficiency on writing quality. The participants were seventeen fifth graders in a small private school. One sample group participated in formal keyboarding instruction for seven weeks. The other sample group used the computers for the same seven week period but with other programs not related to improving keyboarding proficiency. Keyboarding tests were taken as a pre-test and post-test. Writing samples were taken as a pre-test and post-test and scored holistically. An analysis of the keyboarding pre-test and post-tests suggested that a significant improvement in keyboarding skills had developed for the group given formal keyboarding instruction. However, in analyzing the writing samples, the results suggest equal improvement in writing quality for both the keyboarding and control group.
The Effect of Keyboarding Skills on the Quality of Writing Using a Word Processor for Composing

As computers become more widely used in schools, educators have become more interested in one possible use of computers---that of using word processors to assist in teaching writing. Researchers and teachers have begun to see applications to improve writing skills by using computer technology that allows for easier revision and possibly higher motivation (Jackiewicz, 1995; Moore & Turner, 1988; Morton, Lindsay & Roche, 1989; Owston, Murphy & Wildeman, 1990). However, very few have looked specifically at the aspect of composing on the word processor. Questions also exist regarding whether the level of keyboarding proficiency achieved by intermediate grade students affects the quality of writing they produce using a word processor.

Teachers who must make decisions about the usefulness of using word processors in their writing programs must consider the different facets of word processing. Since information input generally requires a keyboard, students need to know the location of letter keys and then be able to press them in a manner that doesn't distract them from the writing process. Researchers have found that this input process is an obstacle in using the word processor as a composition tool (Dalton & Watson, 1986; Dybdahl & Shaw, 1989; MacArthur, 1988; Wetzel, 1985).

Keyboarding is generally defined as the entering of information by using touch typing techniques on a keyboard. Since a large part of the writing process involves the formulation of words and inputting them by some medium, understanding the interaction of keyboarding skills when using a word processor is vital. Without formal instruction, many students learn to "hunt and peck" for letters. But as Dalton and Watson (1986) point out, students find this method time consuming and very distracting to their writing when compared with paper and pencil writing. Dybdahl and Shaw (1989) concluded that computer time is too costly to be wasted by students who "hunt and peck". If students are expected to use a word processor without adequate
instruction in keyboarding techniques, teachers will be promoting an inefficient use of a tool as well as decreasing student's motivation to write.

Many questions are posed by earlier research which examined the interaction between writing and keyboarding. First, is there a certain level of keyboarding proficiency where students no longer need to concentrate on the process of inputting information but can direct all their cognitive processes toward writing? Wetzel (1985) pointed out that students often lost their train of thought while looking for letters to type. Dalton and Watson (1986) concurred that typing problems seemed to interrupt students' concentration while writing. Therefore, it seems that there must be sufficient keyboarding skills for writing on a word processor to be effective.

A second question to consider is whether keyboarding instruction will be effective in the intermediate grades and whether students at this age are capable of achieving a necessary level of competency in keyboarding. Kercher and McLurg (1985) suggest that fifth grade students do well with the touch typing method (keyboarding) after formal instruction. Others agree that young children in intermediate grades are capable of learning keyboarding techniques if taught in a formal setting and given time to practice (Daiute, 1986; Dalton, Morocco, & Neale, 1988). Whether intermediate grade students are able to achieve a level of keyboarding competence which allows them to focus their attention solely on the writing process is yet to be determined.

Many teachers utilize word processors in their writing programs without this attention to keyboarding. When this happens, students must spend the majority of their energy and thoughts on the process of keyboarding rather than on the content of their writing (Cochran-Smith, 1991). Wetzel (1985) says that students who can not type have a difficult time using a word processor. However, he points out that students who type better are more enthusiastic about writing on the computer. If a teacher wishes to foster students' creative abilities during writing, students must not be hindered by the mechanical aspect of typing simply because they haven't had sufficient time to learn how (Dybdahl & Shaw, 1989). Wetzel's study sought to build on a proposition by MacArthur (1988) who stated, "When typing is not automatic, it may interfere with higher order processes involved in composing and adversely affect students' writing" (p. 538).
A final question concerns students' ability to compose with a word processor. Writing is a complex process and many teachers follow the holistic approach of pre-writing activities, writing, and revision (Dalton & Watson, 1986). Since students spend much of their time in the writing and revision stages, teachers have looked for ways to improve students' efficiency and motivation in these areas. The revision capabilities alone would seem to justify the use of word processors in writing programs.

However, there are mixed opinions in this arena. Bryson, Lindsay, Joram, and Woodruff (1986) found in their study that the mere availability of a word processor didn't seem to have any positive effect on the writing process of eighth graders. Dalton and Watson (1986) concluded that using a word processor has no impact on the quality of writing. One reason for this lack of improvement was given by Kellogg and Mueller (1989) who said that word processed documents seem to lack cohesion because students could only see a small part of what they were working on. They added that there is no indication that the word processor amplified writing performance. Lichtenstein (1996) found that students who were using word processors showed the same improvement in their writing quality as those using paper and pencil to compose.

There may be reasons students prefer paper and pencil writing. Students have generally written with paper and pencil, and they are comfortable with and prefer this process (Joram, Woodruff, Lindsay, & Bryson, 1990). However, most students have never been taught to write on a computer, which may cause them to feel uncomfortable using one. Learning the functions and capabilities of the word processor would be vital to making this transition from composing with paper and pencil to composing on the computer. Dalton et al. (1988) point out that a minimum level of competency on computers is necessary for new technology to support students' writing abilities.

Some researchers have observed marked improvement in writing completed on a word processor. Owston, Murphy, and Wildeman (1991) concluded that word processing can make a significant difference in the quality of students' writing, if given experience with a word processor and sufficient time to write. Other studies show that students who were using a word
processor improved the quality of their writing more than those who were not using word processors (Jackiewicz, 1995; Moore & Turner, 1988; Owston et al., 1990). Morton et al. (1989) observed that writing on a word processor produced quantitative changes in writing.

Some researchers limit the effectiveness of word processors to specific groups of students. However, there is no consensus here either. Dalton and Watson (1986) suggest that word processing seems to help low-achieving students. On the other hand, Bryson et al. (1986) maintain that word processing technology will only help students who have good writing ability in the first place. Researchers agree that the word processor can be a potent tool for writing programs, but questions remain regarding the degree of its effectiveness.

Motivation is often a reason teachers introduce the use of a word processor in their classroom (Daiute, 1986; Dalton & Watson, 1986). Because of the ease of revision, students are motivated to make more changes when they know they won't have to copy an entire piece over (Cochran-Smith, 1991). It would seem that this would cause a greater production of writing. However, this has not been found to be true. Dybdahl and Shaw (1989) report that the fourth graders in their study produced less writing with a word processor as compared to writing by hand. Wetzel (1985) added that a major factor in lack of production with a word processor was that students worked inefficiently at the keyboard. It seems then that there are factors that are distracting students from properly using what should be an effective writing tool.

One factor to consider is the word processor itself. The advantages of a word processor include ease in editing, saving, and printing an attractive product. However, when students are unable to use these features effectively, the tool becomes a burden. When students are not skilled at editing text on the word processor, they become distracted from high-level writing concerns by the amount of time taken to attend to this process (Joram et al., 1990).

Dalton et al. (1988) found that the most difficult word processing features for students to master are file management skills, such as saving, retrieving, and printing. They add that an intensive period of instruction is needed in word processing in order for it to support students' writing abilities. Daiute (1986) points out that it may take a significant amount of time to learn
to use a word processor efficiently. In order for word processors to be effectively used as a tool of technology, students must be enabled to use this tool through intensive and often time-consuming instruction and practice.

Instructors must also consider the type of word processing software being used at their respective level. Morton et al. (1989) argue that students in fifth grade may be too young to take advantage of word processing capabilities. Many of the programs used in previous studies used character-based or function key editing features. Owston et al. (1991) suggest that the use of advanced graphical user interface word processors may appeal to younger students. They point out that the use of a mouse and attractive graphical elements may make learning the software easier and increase motivation to use these functions. If instructors take seriously the age level of their students, they must consider whether students are being provided with the best word processing program to meet their needs.

While there is no consensus on the effectiveness of using word processors for writing, most would agree that keyboarding is a significant factor in their use. The purpose of this study was to investigate the influence of keyboarding proficiency on writing quality. Specifically, would an increased level of keyboarding proficiency achieved by fifth grade students significantly improve the quality of writing they produced with a word processor? One of the difficulties in determining whether a significant change in writing was produced is the definition of "quality" in reference to writing (Cochran-Smith, 1991). Quality is often judged by such characteristics as quantity, appearance, mechanics, or number of revisions made. Quality in this study focused on a holistic and analytical approach of evaluation where different facets of the final writing product were considered (Quellmalz, 1982). However, the process of reaching this product, such as number of revisions and time spent revising, was not considered.
Method

Participants

A class of seventeen fifth grade students enrolled in a K-8 private school was the selected participants. Students were introduced to keyboarding in fourth grade but had not achieved a high level of competency.

Participants were rated by their fourth-grade teacher and two fifth-grade teachers on a six-point scale for their overall writing ability. A matching system was employed based on these ratings where students were then randomly assigned to one of two groups to eliminate possible bias due to previous ability.

Materials

The keyboarding tutorial software used was Mavis Beacon Teaches Typing. This is an individualized touch typing program consisting of introduction of new letters, drill exercises, and games paced to the individual's age and rate of improvement.

The word processing program used was Microsoft Works 2.0 and Microsoft Works 3.0. These programs offer easy to use graphical user interface software featuring mouse controlled editing features and also menu driven commands for file management and formatting (Owston et al., 1991).

A computer lab facility with one computer per student was used for all aspects of the study. All writing and keyboarding instruction was completed on IBM compatible personal computers. Some of the drill and practice software was practiced on Apple compatible machines in the lab.

A test was given to evaluate students' mastery of the word processing commands (found in Appendix A). This test required students to retrieve a file from disk, correct obvious errors, use the program's spellchecker, move a block of text within the document, save, and finally print a file.

Quality of writing was evaluated according to the Scale for Evaluating Narrative Writing (SENW) developed by Quellmalz (1982). This is a holistic/analytic instrument that has six-point
scales for evaluating four dimensions of writing—general competence, focus/organization, support, and mechanics. Quellmalz (1982) reports interrater reliability for trained observers of .89 to .91 for the four scales of the measure. A description of the scale levels is given in Appendix B.

Procedure

All students were given formal instruction in the use of word processing using Microsoft Works, along with practice to insure minimum skills of editing, file management and formatting. Instruction focused on learning the uses of the word processor while familiarizing participants with the procedure of composing with a word processor. Therefore, assignments consisted of drill exercises in word processing and completion of a typed journal while learning the procedures of word processing. The journal required the student to respond to various topics and subjects assigned by the teacher without reference to a written first draft.

At the onset of the study, all participants were given a proficiency test to demonstrate competency in using the word processor (see Appendix A). Students who were unable to master the test were given assistance until mastery was achieved.

In addition, all participants were given a keyboarding proficiency test at the beginning of the study. They took two timed tests of one minute each. Students were rated for their gross words per minute (gw/m). This figure was determined by counting total keystrokes per minute and dividing by 5, with no adjustment for accuracy (Wetzel 1985). An average of the two tests was taken as the measure. Any test with more than five mistakes was retaken to insure some attention to accuracy.

To obtain baseline data as to the quality of students' writing, all students composed a narrative story on the word processor. Participants were directed to look at several different illustrations and then write a narrative story based on one of these pictures. In order to allow sufficient time to compose, students were given three forty minute sessions in which to complete their compositions. These papers were coded and saved to be evaluated after the treatment period in order to insure a blind rating by the raters.
After the initial testing, students were divided into the two testing groups. Students in the keyboarding group were given formal keyboarding instruction in the computer lab. Some teacher-directed instruction was included such as instruction in correct posture, finger placement, and other beginning skills, but the majority of the time was spent on the individualized typing tutorial program. The control group also participated in computer activities in the lab, but with software unrelated to improving keyboarding proficiency. They spent their time working drill and practice software in the areas of math, language, social studies, and science.

In order to achieve a group average of thirteen gw/m, this instructional program was implemented for seven weeks, working for four days per week for thirty minutes (Wetzel, 1985). Students from both groups worked in the computer lab simultaneously on their differing software. The keyboarding group took a keyboarding test at the end of each week to evaluate progress.

At the end of the seven week period, all participants took two timed one-minute typing tests. Average gross words per minute were calculated and recorded. Students were once again given several illustrations as starters for a narrative story. All students were given three forty minute sessions to compose and revise their composition on the word processor.

All compositions were coded by the researcher to designate them as pre-treatment or post-treatment work. All writing examples were evaluated in random order for their quality using the Scale for Evaluating Narrative Writing (Quellmalz, 1982). Three teachers were trained as raters using sample student papers from another class. Instructions were given and advice offered until all three raters came within one point of each other for two consecutive sample papers. These papers were saved and used for consultation during actual rating to maintain consistency. All papers were judged by all three teachers. For each paper, ratings were recorded for each element of writing, as well as a composite score in which the scores given for each category were totaled and averaged.
Results

An independent t-test was performed on the pre-treatment typing score to determine whether there was a difference in the average keyboarding skills of the two groups at the onset of the study. The mean score for group one was 11.5 gw/m (gross words per minute) and for group two the mean was 11.9 gw/m (See Table 1). The analysis revealed no significant group difference in regards to previous keyboarding ability, t (15) = -.29, p = .77.

To evaluate the effectiveness of the seven weeks of keyboarding instruction, post-test typing scores were evaluated using an independent t-test. The improvement for group one, who had received the instruction, was evident in a mean score of 18.9 gw/m. Group two (with no instruction) also showed improvement in keyboarding ability as their mean score moved to 13.1 gw/m. The t-test analysis suggested a significant amount of improvement can be attributed to the formal instruction in keyboarding (see Table 1) as the group difference was now significant, t (15) = 2.63, p = .019.

Table 1
Improvement in Pre- and Post-Test Keyboarding Scores

<table>
<thead>
<tr>
<th>Scores</th>
<th>Group 1 (n=9)</th>
<th>Group 2 (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Pre</td>
<td>11.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Post</td>
<td>18.9</td>
<td>5.3</td>
</tr>
</tbody>
</table>

To investigate whether the informal keyboarding work was as beneficial as the formal instruction, a t-test for paired samples was use on the pre-test and post-test keyboarding scores. Significant improvement was also achieved in group two (no instruction) with an increase from 11.9 gw/m to 13.1 gw/m, t (7) = 2.51, p = .041. However the improvement for group one was even greater with a group improvement of 11.5 gw/m to 18.9 gw/m, t (8) = 7.84, p = .000.
The results indicate that time spent working on a keyboard leads to improvement in keyboarding skills. However, keyboarding time coupled with direct instruction and practice in keyboarding skills results in significantly greater improvement.

The investigator was interested in comparing the pre-post writing assessment for each participant to determine whether writing quality improved as keyboarding improved. A matched t-test was conducted for the pre-test and post-test writing samples. No significant improvement in writing was found in the groups, $t(16) = -.30, p = .72$ (See Table 2). An independent analysis of groups was also investigated with no significant results.

Table 2

| Writing Assessment Before and After Keyboarding Instruction ($n=17$) |
|-------------------------|------------------|
| | SENW Score |
| | Sample | Mean | SD |
| Pre | 9.25 | 3.15 |
| Post | 9.42 | 3.06 |

In comparing various aspects of students' writing, an interesting relationship was found in comparing the number of words produced in student's writing (see Table 3). In the pre-test writing samples, there was no significant difference in the number of words produced in groups one and two, $t(15) = 1.07, p = .30$. However, in the post-test results, group one students demonstrated a marked improvement in the number of words in their compositions, $t(15) = 2.47, p = .026$ compared to group two student compositions. These results suggest that direct keyboarding instruction may result in greater fluency of word production.
Table 3

Total Words Produced For Pre-Test And Post-Test Compositions

<table>
<thead>
<tr>
<th>Sample</th>
<th>Group 1 (n=9)</th>
<th>Group 2 (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Pre-Test</td>
<td>415.4</td>
<td>214.1</td>
</tr>
<tr>
<td>Post Test</td>
<td>625.9</td>
<td>265.2</td>
</tr>
</tbody>
</table>

*p = .019

In summary, three conclusions can be found in the results of this study. All students who worked on the keyboard showed significant improvement in their keyboarding ability. However, even greater improvement in keyboarding skill can be obtained if this keyboarding time is coupled with direct instruction and practice in keyboarding. Finally, there was no greater improvement in writing quality for the group of students who improved their keyboarding skills to a higher level than the other group of students.

Discussion

One of the questions this study investigated was whether formal keyboarding instruction would be successful in improving the keyboarding skills of fifth graders. The results support previous research (Kercher & McLurg, 1985; Daiute, 1986; Dalton et al., 1988) that points to the ability of intermediate grade students to significantly improve their keyboarding proficiency if given instruction and time to practice.

It was interesting to see that even keyboarding exposure caused improvement in the control group. It was probable that in using the keyboard, students increased their familiarity with the placement of keys and thus improved their average score by the time of the second test. However, the improvement during the seven weeks for the group practicing keyboarding was
very significant. This points to the importance of formal instruction and consistent practice in order to improve keyboarding skills.

These results suggest the necessity of teaching keyboarding in a formal setting with time to practice these skills in the intermediate grades. Students will then be able to improve their skills and develop good habits at the keyboard before they begin using the computers for lengthy writing assignments.

The main focus of this study was to determine whether there was a certain level of keyboarding proficiency at which students would be able to efficiently and creatively compose at the computer. Would students be able to focus solely on the composing and editing processes without the distraction of the keyboarding process? The results of this study demonstrate that at the level of keyboarding students achieved, there was no more significant improvement in the composing ability for students who learned to type faster. These results were not surprising to the researcher as it was evident during the post-test writing periods that the students who had learned to keyboard more proficiently were still not at a level of typing their thoughts in a fluent manner without focusing on the keyboarding distraction.

A question that arises from these results concerns the reason why keyboarding was still distracting from the student's writing process. Was it specifically because they were still not at a keyboarding level that allowed them to type fluently? Or was this distraction due to developmental level of fifth graders? Keyboarding and writing are both complex processes. It is possible that fifth graders are developmentally unable to simultaneously master these two complex processes. These are questions that future research must answer as intermediate grade teachers consider the use of word processors in their classrooms.

Although there can be many reasons for the lack of improvement in writing quality, these results support previous work that has also shown that having students write on word processors doesn't necessarily improve writing quality, despite the powerful editing and motivational features of computers (Bryson et al., 1986; Dalton & Watson, 1986; Kellogg & Mueller, 1989; Lichtenstein, 1996).
It was also interesting to evaluate the total number of words produced by each group in their writing samples. The keyboarding group produced an average of two hundred twenty more words in their post-test writing samples than in their pre-test samples while the control group averaged only sixty-four more words in the post-test. It seems that although the students were able to lengthen their compositions due to their improved keyboarding ability, the quality of their writing did not improve as judged by the raters.

These results raise some interesting questions regarding how teachers judge quality of writing and how students perceive this quality. Many times students see quantity of writing as a determining factor in the composition's quality. However, the raters in this study, who were elementary teachers, didn't judge the longer compositions as achieving better quality.

This study had some serious limitations. Due to the small class size, the results are not as significant or transferable as they could be. This study could be replicated over several years to find more substantial results. It would also be beneficial to research similar questions with middle school students. Would their improved keyboarding ability and maturity, both developmentally and in writing skills, allow them to use the word processor more effectively than fifth graders?

Despite limitations, these results have implications for schools and how they integrate writing and computers. While motivation may improve for many students while writing on a computer, the mere presence of the computer and learning how to type on this computer won't necessarily improve their writing ability, but it is the way the computer is used in the writing classroom that will determine its effectiveness. (Bryson et al., 1986). With instruction and practice in keyboarding, instruction in how to use the word processor effectively, and using them at age-appropriate levels, word processors must still be recognized as a valuable tool in every school's writing program.
References

Appendix A

1) Open up a file called "test" from the disk given to you.

2) Read the passage looking for all the mistakes you see and correct them using the sentence processing features you have learned.

3) Now move the sentence that reads, "You are surrounded..." right after the sentence that states, "a local shop."

4) Save this document on your own disk with the name, "Type." Then print a copy of this document.

Inform your teacher of the "test" file on disk.

Typing while looking at another page can be a real challenge! Having a good eye for detail and a good ear for correctness is expected of a typist. These criteria are the technical components of a challenge, but also a lot of fun. A lot is riding on this letter and everything honestly means you. You are handed a messy newspaper cut, and you are told to make it look like you boss.
Appendix A

1) Open up a file called "test" from the disk given to you.

2) Read the passage looking for all the mistakes you see and correct them using the word processing features you have learned.

3) Now move the sentence that starts, "You are handed...." . It should be inserted right after the sentence that ends, "a lot of fun."

4) Save this document on your own disk with the new name "type".

4) Print a copy of this document.

Information found under the "test" file on disk:

Typing while looking at another page can be a real challenge! However, in offices all across the country, this is what is expected of a typist. Once you master the technique, it's not only a challenge, but also a lot of fun. A lot is riding on this letter and everything depends on you. You are handed a messy, scratched out, handwritten scrap of paper that must be sent out to your boss.
Appendix B

Scale for Evaluating Narrative Writing (SENW)
Quellmalz, Edys, 1982

The following is a summary of the four scales used in the SENW.

Element 1: General Competency—an overall impression concerning the effectiveness of each composition as an example of narrative writing.

Master:
6- An excellent example of narration. Each element is evident in use throughout the essay. Topic is clearly identified, characters defined, situation is fully developed.
5- A good example of narration, but the elements are not equally well developed throughout the work.
4- An adequate example of narration. The essay is simple, informative and clear, presenting nothing more than the essentials.

Non-Master:
3- A developing example. Narrative presents evidence of writer's limited skill in using the narrative elements.
2- A rudimentary example. Writer's use of elements is problematic, focus on topic steadily decreases, support statements, if present, are weak.
1- Off topic or genre. Presents no central subject, supports are irrelevant or absent. Essay cannot be understood.

Element 2: Focus/Organization—an evaluation of whether the topic is clearly indicated and developed in an organized manner.

Master:
6- The subject of the composition is clearly stated or implied. The subject is clearly developed and events are logical and progressive. There are no extraneous details and the transitions are smooth.
5- The main subject is clearly stated. There may be a slight digression or elaboration, but the topic is limited. Transitions, for the most part, are logical and smooth.
4- The main subject is clearly stated. Most events are ordered according to logical progression but there may be excessive elaboration on some aspects. Most transitions are smooth. There is some digression from the topic.

Non-Master:
3- The main subject is clearly stated or implied. The development of the main point is not carried out clearly enough. There are some digressions or excessive elaborations. Some of the transitions are not sufficiently smooth or logical.
2- The main subject is clear but the main point not developed sufficiently. Events may not always be ordered in logical presentation. There is no attempt to limit the topic/events. There is little attempt at making smooth transitions.
1- The main subject is not clear and the main point is not evident. There is no organizational plan and no attempt to limit the topic/events.

Element 3: Support- the quality (specificity and amount) of the support provided for the essay theme both within each paragraph and throughout the essay.

Master:
6- All events, characters, and descriptions are well developed by specific and clear supporting details, such as examples, descriptions, or facts.
5- Most events, characters, and descriptions are developed through effective use of details but the use of detail may be uneven.
4- Most events, characters, and descriptions are developed through details but the details may not provide sufficient in-depth descriptions about appearance, feeling, thoughts, actions, or mood.

Non-Master:
3- The use of detail is uneven. Several statements are not developed through the use of detail. Some supporting statements are not specific and don't provide in-depth descriptions.
2- Many supporting details lack specificity and depth. The details are not smoothly integrated in the composition.
1- Supporting statements are vague or confusing references to the events, characters, or ideas they describe. There is little evidence of supporting details.

Element 4: Grammar Mechanics- evaluate grammatical errors in relation to how much they interfere with the writer's effectiveness in communicating.

Master:
6- The writer appears to have control over the usage and mechanical aspects of this essay. There are only one or two minor errors in mechanics. There are no gross errors.
5- Usage and mechanics is not a problem in this paper. There are only a few minor errors in usage or mechanics. There may be one isolated gross error but the general meaning is clear.
4- Although usage and mechanics is not a problem, there may be a few common errors. There may be on or two isolated gross errors and no more than three minor errors or a total of five minor errors.
Non-Master:

3- Some errors, gross or minor, interfere with the clarity of communication. There may be a long run-on sentence, inappropriate fragments, confusion of subject-object pronouns, or errors in subject-verb agreement.

2- Errors such as confusing antecedent, omission of key words, and serious misspellings of common words - detract from communication. There are many gross and minor errors throughout the essay.

1- Mechanical errors make this paper very difficult to read or understand. Nearly every sentence contains some type of gross or minor error. Errors are not restricted to one type of problem.
VITA

Name: Jon S. Kroeze

Date of Birth: 7-10-70

Local Address: Sheldon Christian School 1425 East 9th St. Sheldon, IA 51201

Home Address: 810 7th Ave. #3 Sheldon, IA 51201

Note the colleges or universities attended, the years attended, the degrees earned, and the major field.

Dordt College- 1988-1992; B.A. Major: Elementary Education
Minor: Physical Education

If you have had any special honors or awards, please note them here. If not, go on to the next item.

If you have published, please note the articles or books.